IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v52y2019i2d10.1007_s00355-018-1152-2.html
   My bibliography  Save this article

Manipulability of consular election rules

Author

Listed:
  • Egor Ianovski

    (Higher School of Economics)

  • Mark C. Wilson

    (University of Auckland)

Abstract

The Gibbard–Satterthwaite theorem is a cornerstone of social choice theory, stating that an onto social choice function cannot be both strategy-proof and non-dictatorial if the number of alternatives is at least three. The Duggan–Schwartz theorem proves an analogue in the case of set-valued elections: if the function is onto with respect to singletons, and can be manipulated by neither an optimist nor a pessimist, it must have a weak dictator. However, the assumption that the function is onto with respect to singletons makes the Duggan–Schwartz theorem inapplicable to elections which necessarily select multiple winners. In this paper we make a start on this problem by considering rules which always elect exactly two winners (such as the consulship of ancient Rome). We establish that if such a consular election rule cannot be expressed as the union of two disjoint social choice functions, then strategy-proofness implies the existence of a dictator. Although we suspect that a similar result holds for k-winner rules for $$k>2$$ k > 2 , there appear to be many obstacles to proving it, which we discuss in detail.

Suggested Citation

  • Egor Ianovski & Mark C. Wilson, 2019. "Manipulability of consular election rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 363-393, February.
  • Handle: RePEc:spr:sochwe:v:52:y:2019:i:2:d:10.1007_s00355-018-1152-2
    DOI: 10.1007/s00355-018-1152-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-018-1152-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-018-1152-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murat Sertel & Arkadii Slinko, 2007. "Ranking Committees, Income Streams or Multisets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 30(2), pages 289-289, February.
    2. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    3. Kelly, Jerry S, 1977. "Strategy-Proofness and Social Choice Functions without Singlevaluedness," Econometrica, Econometric Society, vol. 45(2), pages 439-446, March.
    4. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    5. Alexander Reffgen, 2011. "Generalizing the Gibbard–Satterthwaite theorem: partial preferences, the degree of manipulation, and multi-valuedness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(1), pages 39-59, June.
    6. Barbera, Salvador, 1977. "The Manipulation of Social Choice Mechanisms That Do Not Leave "Too Much" to Chance," Econometrica, Econometric Society, vol. 45(7), pages 1573-1588, October.
    7. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    8. Jerry S. Kelly & Donald E. Campbell, 2002. "A leximin characterization of strategy-proof and non-resolute social choice procedures," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(4), pages 809-829.
    9. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    10. Salvador Barberà & Danilo Coelho, 2008. "How to choose a non-controversial list with k names," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(1), pages 79-96, June.
    11. Barberà, Salvador & Coelho, Danilo, 2010. "On the rule of k names," Games and Economic Behavior, Elsevier, vol. 70(1), pages 44-61, September.
    12. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    13. Selçuk Özyurt & M. Sanver, 2008. "Strategy-proof resolute social choice correspondences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(1), pages 89-101, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Reffgen, 2011. "Generalizing the Gibbard–Satterthwaite theorem: partial preferences, the degree of manipulation, and multi-valuedness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(1), pages 39-59, June.
    2. Barbera, Salvador & Dutta, Bhaskar & Sen, Arunava, 2005. "Corrigendum to "Strategy-proof social choice correspondences" [J. Econ. Theory 101 (2001) 374-394]," Journal of Economic Theory, Elsevier, vol. 120(2), pages 275-275, February.
    3. Sinan Ertemel & Levent Kutlu & M. Remzi Sanver, 2015. "Voting games of resolute social choice correspondences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(1), pages 187-201, June.
    4. Barbera, S. & Bossert, W. & Pattanaik, P.K., 2001. "Ranking Sets of Objects," Cahiers de recherche 2001-02, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Chatterji, Shurojit & Zeng, Huaxia, 2018. "On random social choice functions with the tops-only property," Games and Economic Behavior, Elsevier, vol. 109(C), pages 413-435.
    6. Eraslan, H.Hulya & McLennan, Andrew, 2004. "Strategic candidacy for multivalued voting procedures," Journal of Economic Theory, Elsevier, vol. 117(1), pages 29-54, July.
    7. Benoit, Jean-Pierre, 2002. "Strategic Manipulation in Voting Games When Lotteries and Ties Are Permitted," Journal of Economic Theory, Elsevier, vol. 102(2), pages 421-436, February.
    8. Özyurt, Selçuk & Sanver, M. Remzi, 2009. "A general impossibility result on strategy-proof social choice hyperfunctions," Games and Economic Behavior, Elsevier, vol. 66(2), pages 880-892, July.
    9. Bora Erdamar & M. Sanver, 2009. "Choosers as extension axioms," Theory and Decision, Springer, vol. 67(4), pages 375-384, October.
    10. Picot, Jérémy & Sen, Arunava, 2012. "An extreme point characterization of random strategy-proof social choice functions: The two alternative case," Economics Letters, Elsevier, vol. 115(1), pages 49-52.
    11. Erdamar, Bora & Sanver, M. Remzi & Sato, Shin, 2017. "Evaluationwise strategy-proofness," Games and Economic Behavior, Elsevier, vol. 106(C), pages 227-238.
    12. Barbera, S. & Masso, J. & Serizawa, S., 1998. "Strategy-Proof Voting on Compact Ranges," Games and Economic Behavior, Elsevier, vol. 25(2), pages 272-291, November.
    13. BAHEL, Eric & SPRUMONT, Yves, 2017. "Strategyproof choice of acts: beyond dictatorship," Cahiers de recherche 2017-01, Universite de Montreal, Departement de sciences economiques.
    14. SPRUMONT, Yves, 2016. "Strategy-proof choice of acts: a preliminary study," Cahiers de recherche 2016-06, Universite de Montreal, Departement de sciences economiques.
    15. Bochet, Olivier & Sakai, Toyotaka, 2007. "Strategic manipulations of multi-valued solutions in economies with indivisibilities," Mathematical Social Sciences, Elsevier, vol. 53(1), pages 53-68, January.
    16. Felix Brandt, 2015. "Set-monotonicity implies Kelly-strategyproofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 793-804, December.
    17. Aziz, Haris & Brandl, Florian & Brandt, Felix & Brill, Markus, 2018. "On the tradeoff between efficiency and strategyproofness," Games and Economic Behavior, Elsevier, vol. 110(C), pages 1-18.
    18. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2014. "Random dictatorship domains," Games and Economic Behavior, Elsevier, vol. 86(C), pages 212-236.
    19. Emre Doğan & M. Sanver, 2008. "Arrovian impossibilities in aggregating preferences over non-resolute outcomes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(3), pages 495-506, April.
    20. Reffgen, Alexander, 2015. "Strategy-proof social choice on multiple and multi-dimensional single-peaked domains," Journal of Economic Theory, Elsevier, vol. 157(C), pages 349-383.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:52:y:2019:i:2:d:10.1007_s00355-018-1152-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.