IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v2y2021i2d10.1007_s43069-021-00070-3.html
   My bibliography  Save this article

Topological Data Analysis for Network Resilience Quantification

Author

Listed:
  • Luiz Manella Pereira

    (Florida International University (FIU)
    FIU)

  • Luis Caicedo Torres

    (FIU)

  • M. Hadi Amini

    (Florida International University (FIU)
    FIU)

Abstract

Developing accurate metrics to evaluate the resilience of large-scale networks, e.g., critical infrastructures, plays a pivotal role in secure operation of these networks. In this paper, we propose a novel framework to study the resilience of a network. To this end, we leverage the tools from Topological Data Analysis (TDA) and Persistent Homology (PH). The combined deployment of TDA and PH tools provides us with a solid understanding of network topology only based on the underlying weighted graph and comparing it with the base network, e.g., fully connected network as the most resilient structure. By utilizing an abstract network to build our arguments and results, we present a step-by-step method to leverage the fundamental theories of TDA to study and improve a network’s resilience. By creating a weighted graph, where weights represent a meaningful attribute to the underlying network, we utilize Vietori–Rips complex and filtration to create persistent diagrams. This allows us to extract topological information to study network resilience. Further, we show how the use of Wasserstein distances can provide detailed information about the critical edges (e.g., roads in transportation networks, or power distribution lines in power networks) in the network, and how adding or removing certain edges affect the level of resilience of the network by presenting a novel metric to quantify the resilience of a network. We evaluate the effectiveness of the proposed method using a case study that compares a base network with networks that include different edges using our resilience metric.

Suggested Citation

  • Luiz Manella Pereira & Luis Caicedo Torres & M. Hadi Amini, 2021. "Topological Data Analysis for Network Resilience Quantification," SN Operations Research Forum, Springer, vol. 2(2), pages 1-17, June.
  • Handle: RePEc:spr:snopef:v:2:y:2021:i:2:d:10.1007_s43069-021-00070-3
    DOI: 10.1007/s43069-021-00070-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-021-00070-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-021-00070-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Max Z. & Ryerson, Megan S. & Balakrishnan, Hamsa, 2019. "Topological data analysis for aviation applications," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 149-174.
    2. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    2. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Sebestyén, Tamás & Szabó, Norbert & Braun, Emese & Bedő, Zsolt, 2024. "Lokális reziliencia számítása térbeli általános egyensúlyi modell felhasználásával [Measuring local resilience with a spatial computable general equilibrium model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1222-1253.
    8. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    9. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    10. Stødle, Kaia & Metcalfe, Caroline A. & Brunner, Logan G. & Saliani, Julian N. & Flage, Roger & Guikema, Seth D., 2021. "Dependent infrastructure system modeling: A case study of the St. Kitts power and water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Kamila Borsekova & Samuel Koróny & Peter Nijkamp, 2022. "In Search of Concerted Strategies for Competitive and Resilient Regions," Networks and Spatial Economics, Springer, vol. 22(3), pages 607-634, September.
    12. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    13. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    14. Abbasiharofteh, Milad & Kogler, Dieter F. & Lengyel, Balázs, 2023. "Atypical combinations of technologies in regional co-inventor networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 52(10), pages 1-1.
    15. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    16. Juan Carlos Martín & Aura Reggiani & Jean-Claude Thill, 2018. "Editorial introduction for the special issue on accessibility, resilience and vulnerability," Transportation, Springer, vol. 45(4), pages 1003-1007, July.
    17. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    18. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Convertino, Matteo & Annis, Antonio & Nardi, Fernando, 2019. "Information-theoretic Portfolio Decision Model for Optimal Flood Management," Earth Arxiv k5aut, Center for Open Science.
    20. Chunheng Jiang & Zhenhan Huang & Tejaswini Pedapati & Pin-Yu Chen & Yizhou Sun & Jianxi Gao, 2024. "Network properties determine neural network performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:2:y:2021:i:2:d:10.1007_s43069-021-00070-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.