IDEAS home Printed from https://ideas.repec.org/a/spr/snbeco/v2y2022i3d10.1007_s43546-021-00188-w.html
   My bibliography  Save this article

Self-sustained price bubbles driven by digital currency innovations and adaptive market behavior

Author

Listed:
  • Misha Perepelitsa

    (University of Houston)

  • Ilya Timofeyev

    (University of Houston)

Abstract

In this article we discuss a mechanism of price inflation in a market of digital currencies such as Bitcoin. The phenomenon is attributed to traders who adhere to adaptive approach to investment, rebalancing their investment portfolios and selecting the target portfolios based on the recent changes in the price. The adaptive strategy can be viewed as a psychological response of a trader to the situation when the trader’s estimation of future prices does not match the actual, realized price. We show that the unique property of infinite divisibility of Bitcoin in conjunction with traders adaptive behavior lead to a price bubble that may persist for long time periods. Our approach uses an agent-based model, called the asynchronous stochastic price pump, to quantify main statistical properties of the time series of a bubble, such as the return, the volatility, the systematic risk of a crash, and the distribution of crash times.

Suggested Citation

  • Misha Perepelitsa & Ilya Timofeyev, 2022. "Self-sustained price bubbles driven by digital currency innovations and adaptive market behavior," SN Business & Economics, Springer, vol. 2(3), pages 1-15, March.
  • Handle: RePEc:spr:snbeco:v:2:y:2022:i:3:d:10.1007_s43546-021-00188-w
    DOI: 10.1007/s43546-021-00188-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43546-021-00188-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43546-021-00188-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Tedeschi, Gabriele & Iori, Giulia & Gallegati, Mauro, 2012. "Herding effects in order driven markets: The rise and fall of gurus," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 82-96.
    3. Perepelitsa, Misha & Timofeyev, Ilya, 2019. "Asynchronous stochastic price pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 356-364.
    4. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    5. Sha Wang & Jean-Philippe Vergne, 2017. "Buzz Factor or Innovation Potential: What Explains Cryptocurrencies’ Returns?," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
    6. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    7. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    8. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    9. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    11. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    12. Neely, Christopher J. & Weller, Paul A. & Ulrich, Joshua M., 2009. "The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(2), pages 467-488, April.
    13. David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
    14. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    15. Olivier J. Blanchard & Mark W. Watson, 1982. "Bubbles, Rational Expectations and Financial Markets," NBER Working Papers 0945, National Bureau of Economic Research, Inc.
    16. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    17. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    18. Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
    19. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    20. Ambreen Khursheed & Muhammad Naeem & Sheraz Ahmed & Faisal Mustafa & David McMillan, 2020. "Adaptive market hypothesis: An empirical analysis of time –varying market efficiency of cryptocurrencies," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1719574-171, January.
    21. Blanchard, Olivier Jean, 1979. "Speculative bubbles, crashes and rational expectations," Economics Letters, Elsevier, vol. 3(4), pages 387-389.
    22. Luisanna Cocco & Roberto Tonelli & Michele Marchesi, 2019. "An Agent Based Model to Analyze the Bitcoin Mining Activity and a Comparison with the Gold Mining Industry," Future Internet, MDPI, vol. 11(1), pages 1-12, January.
    23. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    24. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    25. Jose A. Scheinkman & Wei Xiong, 2003. "Overconfidence and Speculative Bubbles," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1183-1219, December.
    26. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    27. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    28. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Perepelitsa, 2022. "Two Models of Speculative Bubbles Dynamics for Cryptocurrency Prices," Applied Economics and Finance, Redfame publishing, vol. 9(4), pages 3646-3646, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misha Perepelitsa, 2021. "Psychological dimension of adaptive trading in cryptocurrency markets," Papers 2109.12166, arXiv.org.
    2. Misha Perepelitsa, 2021. "Investing in crypto: speculative bubbles and cyclic stochastic price pumps," Papers 2111.11315, arXiv.org, revised Oct 2022.
    3. Misha Perepelitsa & Ilya Timofeyev, 2020. "Self-sustained price bubbles driven by Bitcoin innovations and adaptive behavior," Papers 2012.14860, arXiv.org.
    4. Misha Perepelitsa, 2018. "A model of adaptive, market behavior generating positive returns, volatility and system risk," Papers 1809.09601, arXiv.org.
    5. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    6. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    7. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    8. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    9. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    10. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    11. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    13. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    14. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    15. Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
    16. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    17. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    18. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.
    19. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    20. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:2:y:2022:i:3:d:10.1007_s43546-021-00188-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.