IDEAS home Printed from https://ideas.repec.org/a/spr/sjobre/v57y2005i2d10.1007_bf03371629.html
   My bibliography  Save this article

Reverse-Pricing-Verfahren und deren Möglichkeiten zur Messung von individuellen Suchkosten und Zahlungsbereitschaften

Author

Listed:
  • Martin Spann

    (Johann Wolfgang Goethe-Universität Frankfurt am Main)

  • Bernd Skiera

    (Johann Wolfgang Goethe-Universität Frankfurt am Main)

  • Björn Schäfers

    (Christian-Albrechts-Universität zu Kiel)

Abstract

Zusammenfassung In einem Inbound Call-Center muss die Anzahl der eingesetzten Agenten im Zeitablauf dem zeitlich schwankenden Anrufaufkommen angepasst werden. In der Praxis werden vielfach einzelne Halbstundenintervalle isoliert betrachtet, und man ermittelt eine solche Anzahl von Agenten, bei der die Wartezeit der Anrufer auf einen Agenten gerade unter einer vorgegebenen Schranke bleibt. In diesem Aufsatz wird dagegen die Frage nach einer gewinnmaximierenden Allokation der Agenten zum Beispiel über eine ganze Woche gestellt. Dabei zeigt sich, dass neben der Anzahl eingesetzter Agenten auch die Anzahl angebotener Wartepositionen eine wichtige Entscheidungsvariable ist und dass eine gewinn-maximierende Agentenallokation auch die Art der verwendeten Servicerufnummer berücksichtigen muss.

Suggested Citation

  • Martin Spann & Bernd Skiera & Björn Schäfers, 2005. "Reverse-Pricing-Verfahren und deren Möglichkeiten zur Messung von individuellen Suchkosten und Zahlungsbereitschaften," Schmalenbach Journal of Business Research, Springer, vol. 57(2), pages 107-128, March.
  • Handle: RePEc:spr:sjobre:v:57:y:2005:i:2:d:10.1007_bf03371629
    DOI: 10.1007/BF03371629
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF03371629
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/BF03371629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Goldman, Arieh & Johansson, J K, 1978. "Determinants of Search for Lower Prices: An Empirical Assessment of the Economics of Information Theory," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(3), pages 176-186, December.
    2. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    3. Michael Rothschild, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown: A Summary," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 1, pages 293-294, National Bureau of Economic Research, Inc.
    4. Elizabeth Hoffman & Dale J. Menkhaus & Dipankar Chakravarti & Ray A. Field & Glen D. Whipple, 1993. "Using Laboratory Experimental Auctions in Marketing Research: A Case Study of New Packaging for Fresh Beef," Marketing Science, INFORMS, vol. 12(3), pages 318-338.
    5. Milgrom, Paul, 1989. "Auctions and Bidding: A Primer," Journal of Economic Perspectives, American Economic Association, vol. 3(3), pages 3-22, Summer.
    6. Il-Horn Hann & Christian Terwiesch, 2003. "Measuring the Frictional Costs of Online Transactions: The Case of a Name-Your-Own-Price Channel," Management Science, INFORMS, vol. 49(11), pages 1563-1579, November.
    7. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    8. Rothschild, Michael, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 689-711, July/Aug..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeSarbo, Wayne S. & Choi, Jungwhan, 1998. "A latent structure double hurdle regression model for exploring heterogeneity in consumer search patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 423-455, November.
    2. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2019. "Modeling Consumer Footprints on Search Engines: An Interplay with Social Media," Management Science, INFORMS, vol. 65(3), pages 1363-1385, March.
    3. Keller, Godfrey & Novák, Vladimír & Willems, Tim, 2019. "A note on optimal experimentation under risk aversion," Journal of Economic Theory, Elsevier, vol. 179(C), pages 476-487.
    4. Laura J. Kornish & Karl T. Ulrich, 2011. "Opportunity Spaces in Innovation: Empirical Analysis of Large Samples of Ideas," Management Science, INFORMS, vol. 57(1), pages 107-128, January.
    5. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    6. Rafael P. Greminger, 2022. "Optimal Search and Discovery," Management Science, INFORMS, vol. 68(5), pages 3904-3924, May.
    7. Xing Zhang & Tat Y. Chan & Ying Xie, 2018. "Price Search and Periodic Price Discounts," Management Science, INFORMS, vol. 64(2), pages 495-510, February.
    8. Darrell Duffie & Piotr Dworczak & Haoxiang Zhu, 2017. "Benchmarks in Search Markets," Journal of Finance, American Finance Association, vol. 72(5), pages 1983-2044, October.
    9. Jochen Haller, 2002. "The Impact of Electronic Markets on B2B-Relationships," Industrial Organization 0204004, University Library of Munich, Germany, revised 05 Feb 2004.
    10. Shaun Larcom & Ferdinand Rauch & Tim Willems, 2017. "The Benefits of Forced Experimentation: Striking Evidence from the London Underground Network," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 2019-2055.
    11. Greminger, Rafael, 2022. "Essays on consumer search," Other publications TiSEM 404020a9-8337-4950-b57f-0, Tilburg University, School of Economics and Management.
    12. Anocha Aribarg & Thomas Otter & Daniel Zantedeschi & Greg M. Allenby & Taylor Bentley & David J. Curry & Marc Dotson & Ty Henderson & Elisabeth Honka & Rajeev Kohli & Kamel Jedidi & Stephan Seiler & X, 2018. "Advancing Non-compensatory Choice Models in Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 82-92, March.
    13. Marcoul, Philippe & Weninger, Quinn, 2008. "Search and active learning with correlated information: Empirical evidence from mid-Atlantic clam fishermen," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1921-1948, June.
    14. Adam, Klaus, 2001. "Learning While Searching for the Best Alternative," Journal of Economic Theory, Elsevier, vol. 101(1), pages 252-280, November.
    15. Babur De Los Santos & Ali Hortacsu & Matthijs R. Wildenbeest, 2012. "Testing Models of Consumer Search Using Data on Web Browsing and Purchasing Behavior," American Economic Review, American Economic Association, vol. 102(6), pages 2955-2980, October.
    16. Babur De los Santos & Ali Hortacsu & Matthijs R. Wildenbeest, 2009. "Testing Models of Consumer Search Using Data on Web Browsing Behavior," Working Papers 09-23, NET Institute, revised Aug 2009.
    17. Elisabeth Honka & Pradeep Chintagunta, 2017. "Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry," Marketing Science, INFORMS, vol. 36(1), pages 21-42, January.
    18. Charles Hodgson & Gregory Lewis, 2020. "You Can Lead a Horse to Water: Spatial Learning and Path Dependence in Consumer Search," Cowles Foundation Discussion Papers 2246, Cowles Foundation for Research in Economics, Yale University.
    19. Christopher J. Mayer, 1993. "A model of real estate auctions versus negotiated sales," Working Papers 93-3, Federal Reserve Bank of Boston.
    20. Greminger, Rafael, 2019. "Optimal Search and Awareness Expansion," Other publications TiSEM ac47e6ff-42a4-4d70-addd-6, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    M31; D4; D11; D12;
    All these keywords.

    JEL classification:

    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:57:y:2005:i:2:d:10.1007_bf03371629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.