IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v26y2023i3d10.1007_s11203-023-09294-y.html
   My bibliography  Save this article

Statistical inference on stationary shot noise random fields

Author

Listed:
  • Antoine Lerbet

    (Université de Tours)

Abstract

We study the asymptotic behaviour of a stationnary shot noise random field. We use the notion of association to prove the asymptotic normality of the moments and a multidimensional version for the correlation functions. The variance of the moment estimates is detailed as well as their correlation. When the field is isotropic, the estimators are improved by reducing the variance. These results will be applied to the estimation of the model parameters in the case of a Gaussian kernel, with a focus on the correlation parameter. The asymptotic normality is proved and a simulation study is carried out.

Suggested Citation

  • Antoine Lerbet, 2023. "Statistical inference on stationary shot noise random fields," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 551-580, October.
  • Handle: RePEc:spr:sistpr:v:26:y:2023:i:3:d:10.1007_s11203-023-09294-y
    DOI: 10.1007/s11203-023-09294-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-023-09294-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-023-09294-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elena Di Bernardino & Céline Duval, 2022. "Statistics for Gaussian random fields with unknown location and scale using Lipschitz‐Killing curvatures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 143-184, March.
    2. Burton, Robert M. & Dabrowski, AndréRobert & Dehling, Herold, 1986. "An invariance principle for weakly associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 23(2), pages 301-306, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    2. Kim, Tae-Sung & Ko, Mi-Hwa & Han, Kwang-Hee, 2008. "On the almost sure convergence for a linear process generated by negatively associated random variables in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2110-2115, October.
    3. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    4. R.M. Balan, 2003. "A Strong Invariance Principle for Associated Random Fields," RePAd Working Paper Series lrsp-TRS390, Département des sciences administratives, UQO.
    5. Vu T. N. Anh & Nguyen T. T. Hien & Le V. Thanh & Vo T. H. Van, 2021. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences," Journal of Theoretical Probability, Springer, vol. 34(1), pages 331-348, March.
    6. Zhang, Li-Xin, 2001. "Strassen's law of the iterated logarithm for negatively associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 311-328, October.
    7. Mi-Hwa Ko & Tae-Sung Kim & Kwang-Hee Han, 2009. "A Note on the Almost Sure Convergence for Dependent Random Variables in a Hilbert Space," Journal of Theoretical Probability, Springer, vol. 22(2), pages 506-513, June.
    8. Kim, Tae-Sung & Ko, Mi-Hwa, 2008. "A central limit theorem for the linear process generated by associated random variables in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2102-2109, October.
    9. Khoshnevisan, Davar & Lewis, Thomas M., 1998. "A law of the iterated logarithm for stable processes in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 89-121, May.
    10. Xin Guo & Zhao Ruan & Lingjiong Zhu, 2015. "Dynamics of Order Positions and Related Queues in a Limit Order Book," Papers 1505.04810, arXiv.org, revised Oct 2015.
    11. Thuan, Nguyen Tran & Quang, Nguyen Van, 2016. "Negative association and negative dependence for random upper semicontinuous functions, with applications," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 44-57.
    12. Chen, Jia, 2008. "Asymptotics of kernel density estimators on weakly associated random fields," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3230-3237, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:26:y:2023:i:3:d:10.1007_s11203-023-09294-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.