IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v25y2022i2d10.1007_s11203-021-09253-5.html
   My bibliography  Save this article

Detection and identification of changes of hidden Markov chains: asymptotic theory

Author

Listed:
  • Savas Dayanik

    (Bilkent University)

  • Kazutoshi Yamazaki

    (Kansai University)

Abstract

This paper revisits a unified framework of sequential change-point detection and hypothesis testing modeled using hidden Markov chains and develops its asymptotic theory. Given a sequence of observations whose distributions are dependent on a hidden Markov chain, the objective is to quickly detect critical events, modeled by the first time the Markov chain leaves a specific set of states, and to accurately identify the class of states that the Markov chain enters. We propose computationally tractable sequential detection and identification strategies and obtain sufficient conditions for the asymptotic optimality in two Bayesian formulations. Numerical examples are provided to confirm the asymptotic optimality.

Suggested Citation

  • Savas Dayanik & Kazutoshi Yamazaki, 2022. "Detection and identification of changes of hidden Markov chains: asymptotic theory," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 261-301, July.
  • Handle: RePEc:spr:sistpr:v:25:y:2022:i:2:d:10.1007_s11203-021-09253-5
    DOI: 10.1007/s11203-021-09253-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-021-09253-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-021-09253-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serguei Pergamenchtchikov & Alexander G. Tartakovsky, 2018. "Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 217-259, April.
    2. Savas Dayanik & Warren B. Powell & Kazutoshi Yamazaki, 2013. "Asymptotically optimal Bayesian sequential change detection and identification rules," Annals of Operations Research, Springer, vol. 208(1), pages 337-370, September.
    3. Savas Dayanik & Warren Powell & Kazutoshi Yamazaki, 2013. "Asymptotically optimal Bayesian sequential change detection and identification rules," Annals of Operations Research, Springer, vol. 208(1), pages 337-370, September.
    4. Pergamenchtchikov, Serguei & Tartakovsky, Alexander G., 2019. "Asymptotically optimal pointwise and minimax change-point detection for general stochastic models with a composite post-change hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    5. Savas Dayanik & Christian Goulding & H. Vincent Poor, 2008. "Bayesian Sequential Change Diagnosis," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 475-496, May.
    6. Alexander Tartakovsky, 1998. "Asymptotic Optimality of Certain Multihypothesis Sequential Tests: Non‐i.i.d. Case," Statistical Inference for Stochastic Processes, Springer, vol. 1(3), pages 265-295, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda Boudjemila & Alexander Bobyl & Vadim Davydov & Vladislav Malyshkin, 2022. "On a Moving Average with Internal Degrees of Freedom," Papers 2211.14075, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pergamenchtchikov, Serguei M. & Tartakovsky, Alexander G. & Spivak, Valentin S., 2022. "Minimax and pointwise sequential changepoint detection and identification for general stochastic models," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Lu, Zexian & Chen, Yunxiao & Li, Xiaoou, 2022. "Optimal parallel sequential change detection under generalized performance measures," LSE Research Online Documents on Economics 118348, London School of Economics and Political Science, LSE Library.
    3. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.
    4. Alexander G. Tartakovsky, 2023. "Quick and Complete Convergence in the Law of Large Numbers with Applications to Statistics," Mathematics, MDPI, vol. 11(12), pages 1-30, June.
    5. Savas Dayanik & Warren Powell & Kazutoshi Yamazaki, 2013. "Asymptotically optimal Bayesian sequential change detection and identification rules," Annals of Operations Research, Springer, vol. 208(1), pages 337-370, September.
    6. Savas Dayanik & Semih O Sezer, 2023. "Model Misspecification in Discrete Time Bayesian Online Change Detection," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-27, March.
    7. Bouzebda, Salim & Ferfache, Anouar Abdeldjaoued, 2023. "Asymptotic properties of semiparametric M-estimators with multiple change points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.
    9. Savas Dayanik & Warren B. Powell & Kazutoshi Yamazaki, 2013. "Asymptotically optimal Bayesian sequential change detection and identification rules," Annals of Operations Research, Springer, vol. 208(1), pages 337-370, September.
    10. Yuan-chin Chang, 2005. "Application of Sequential Interval Estimation to Adaptive Mastery Testing," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 685-713, December.
    11. Pergamenchtchikov, Serguei & Tartakovsky, Alexander G., 2019. "Asymptotically optimal pointwise and minimax change-point detection for general stochastic models with a composite post-change hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:25:y:2022:i:2:d:10.1007_s11203-021-09253-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.