IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v190y2022ics0047259x22000203.html
   My bibliography  Save this article

Minimax and pointwise sequential changepoint detection and identification for general stochastic models

Author

Listed:
  • Pergamenchtchikov, Serguei M.
  • Tartakovsky, Alexander G.
  • Spivak, Valentin S.

Abstract

This paper considers the problem of joint change detection and identification assuming multiple composite post-change hypotheses. We propose a multihypothesis changepoint detection-identification procedure that controls the probabilities of false alarm and wrong identification. We show that the proposed procedure is asymptotically minimax and pointwise optimal, minimizing moments of the detection delay as probabilities of false alarm and wrong identification approach zero. The asymptotic optimality properties hold for general stochastic models with dependent and nonidentically distributed observations. We illustrate general results for detection-identification of changes in multistream Markov ergodic processes. We consider several examples, including an application to rapid detection-identification of COVID-19 in Italy. Our proposed sequential algorithm allows much faster detection of COVID-19 than standard methods.

Suggested Citation

  • Pergamenchtchikov, Serguei M. & Tartakovsky, Alexander G. & Spivak, Valentin S., 2022. "Minimax and pointwise sequential changepoint detection and identification for general stochastic models," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000203
    DOI: 10.1016/j.jmva.2022.104977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.104977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pergamenchtchikov, Serguei & Tartakovsky, Alexander G., 2019. "Asymptotically optimal pointwise and minimax change-point detection for general stochastic models with a composite post-change hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    2. Serguei Pergamenchtchikov & Alexander G. Tartakovsky, 2018. "Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 217-259, April.
    3. Savas Dayanik & Warren B. Powell & Kazutoshi Yamazaki, 2013. "Asymptotically optimal Bayesian sequential change detection and identification rules," Annals of Operations Research, Springer, vol. 208(1), pages 337-370, September.
    4. Savas Dayanik & Warren Powell & Kazutoshi Yamazaki, 2013. "Asymptotically optimal Bayesian sequential change detection and identification rules," Annals of Operations Research, Springer, vol. 208(1), pages 337-370, September.
    5. Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savas Dayanik & Kazutoshi Yamazaki, 2022. "Detection and identification of changes of hidden Markov chains: asymptotic theory," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 261-301, July.
    2. Pergamenchtchikov, Serguei & Tartakovsky, Alexander G., 2019. "Asymptotically optimal pointwise and minimax change-point detection for general stochastic models with a composite post-change hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    3. Serguei Pergamenchtchikov & Alexander G. Tartakovsky, 2018. "Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 217-259, April.
    4. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    5. Bouzebda, Salim & Ferfache, Anouar Abdeldjaoued, 2023. "Asymptotic properties of semiparametric M-estimators with multiple change points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Alexander G. Tartakovsky, 2023. "Quick and Complete Convergence in the Law of Large Numbers with Applications to Statistics," Mathematics, MDPI, vol. 11(12), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.