IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2687-d1170299.html
   My bibliography  Save this article

Quick and Complete Convergence in the Law of Large Numbers with Applications to Statistics

Author

Listed:
  • Alexander G. Tartakovsky

    (AGT StatConsult, 71 Cypress Way, Rolling Hills Estates, CA 90274, USA)

Abstract

In the first part of this article, we discuss and generalize the complete convergence introduced by Hsu and Robbins in 1947 to the r -complete convergence introduced by Tartakovsky in 1998. We also establish its relation to the r -quick convergence first introduced by Strassen in 1967 and extensively studied by Lai. Our work is motivated by various statistical problems, mostly in sequential analysis. As we show in the second part, generalizing and studying these convergence modes is important not only in probability theory but also to solve challenging statistical problems in hypothesis testing and changepoint detection for general stochastic non-i.i.d. models.

Suggested Citation

  • Alexander G. Tartakovsky, 2023. "Quick and Complete Convergence in the Law of Large Numbers with Applications to Statistics," Mathematics, MDPI, vol. 11(12), pages 1-30, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2687-:d:1170299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serguei Pergamenchtchikov & Alexander G. Tartakovsky, 2018. "Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 217-259, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savas Dayanik & Kazutoshi Yamazaki, 2022. "Detection and identification of changes of hidden Markov chains: asymptotic theory," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 261-301, July.
    2. Pergamenchtchikov, Serguei M. & Tartakovsky, Alexander G. & Spivak, Valentin S., 2022. "Minimax and pointwise sequential changepoint detection and identification for general stochastic models," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Pergamenchtchikov, Serguei & Tartakovsky, Alexander G., 2019. "Asymptotically optimal pointwise and minimax change-point detection for general stochastic models with a composite post-change hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2687-:d:1170299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.