IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i1d10.1007_s11203-016-9144-2.html
   My bibliography  Save this article

Nonparametric estimation for irregularly sampled Lévy processes

Author

Listed:
  • Johanna Kappus

    (Universität Rostock)

Abstract

We consider nonparametric statistical inference for Lévy processes sampled irregularly, at low frequency. The estimation of the jump dynamics as well as the estimation of the distributional density are investigated. Non-asymptotic risk bounds are derived and the corresponding rates of convergence are discussed under global as well as local regularity assumptions. Moreover, minimax optimality is proved for the estimator of the jump measure. Some numerical examples are given to illustrate the practical performance of the estimation procedure.

Suggested Citation

  • Johanna Kappus, 2018. "Nonparametric estimation for irregularly sampled Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 141-167, April.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:1:d:10.1007_s11203-016-9144-2
    DOI: 10.1007/s11203-016-9144-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-016-9144-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-016-9144-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    2. Ibragimov, Rustam & Sharakhmetov, Shaturgun, 2002. "The exact constant in the Rosenthal inequality for random variables with mean zero," Scholarly Articles 2623703, Harvard University Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
    2. Comte, Fabienne & Kappus, Johanna, 2015. "Density deconvolution from repeated measurements without symmetry assumption on the errors," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 31-46.
    3. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    4. Trabs, Mathias, 2015. "Quantile estimation for Lévy measures," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3484-3521.
    5. Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
    6. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    7. Shota Gugushvili & Ester Mariucci & Frank van der Meulen, 2020. "Decompounding discrete distributions: A nonparametric Bayesian approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 464-492, June.
    8. Gwennaëlle Mabon, 2014. "Adaptive Estimation of Random-Effects Densities In Linear Mixed-Effects Model," Working Papers 2014-41, Center for Research in Economics and Statistics.
    9. Shimizu, Yasutaka & Zhang, Zhimin, 2017. "Estimating Gerber–Shiu functions from discretely observed Lévy driven surplus," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 84-98.
    10. Christophe Chesneau & Fabienne Comte & Gwennaëlle Mabon & Fabien Navarro, 2014. "Estimation of Convolution In The Model with Noise," Working Papers 2014-39, Center for Research in Economics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:1:d:10.1007_s11203-016-9144-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.