IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v12y2009i3p251-268.html
   My bibliography  Save this article

The normal approximation rate for the drift estimator of multidimensional diffusions

Author

Listed:
  • Annamaria Bianchi

Abstract

No abstract is available for this item.

Suggested Citation

  • Annamaria Bianchi, 2009. "The normal approximation rate for the drift estimator of multidimensional diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 12(3), pages 251-268, October.
  • Handle: RePEc:spr:sistpr:v:12:y:2009:i:3:p:251-268
    DOI: 10.1007/s11203-008-9032-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-008-9032-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-008-9032-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bandi, Federico M. & Moloche, Guillermo, 2018. "On The Functional Estimation Of Multivariate Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 34(4), pages 896-946, August.
    2. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Hjalmarsson, Erik, 2003. "Does the Black-Scholes formula work for electricity markets? A nonparametric approach," Working Papers in Economics 101, University of Gothenburg, Department of Economics.
    3. Dalalyan Arnak S. & Kutoyants Yury A., 2004. "On second order minimax estimation of invariant density for ergodic diffusion," Statistics & Risk Modeling, De Gruyter, vol. 22(1), pages 17-42, January.
    4. Gao, Jiti & Kanaya, Shin & Li, Degui & Tjøstheim, Dag, 2015. "Uniform Consistency For Nonparametric Estimators In Null Recurrent Time Series," Econometric Theory, Cambridge University Press, vol. 31(5), pages 911-952, October.
    5. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
    6. Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
    7. Aït-Sahalia, Yacine & Park, Joon Y., 2012. "Stationarity-based specification tests for diffusions when the process is nonstationary," Journal of Econometrics, Elsevier, vol. 169(2), pages 279-292.
    8. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    9. Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
    10. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    11. Didi Sultana & Louani Djamal, 2014. "Asymptotic results for the regression function estimate on continuous time stationary and ergodic data," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 129-150, June.
    12. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    13. Cheng, Yu-Hsiang & Huang, Tzee-Ming, 2012. "A conditional independence test for dependent data based on maximal conditional correlation," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 210-226.
    14. Oberhofer, Walter & Haupt, Harry, 2005. "The asymptotic distribution of the unconditional quantile estimator under dependence," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 243-250, July.
    15. Zhan-Qian Lu, 1999. "Multivariate Local Polynomial Fitting for Martingale Nonlinear Regression Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(4), pages 691-706, December.
    16. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    17. Didi, Sultana & Louani, Djamal, 2013. "Consistency results for the kernel density estimate on continuous time stationary and dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1262-1270.
    18. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    19. Boris Labrador, 2009. "Rates of strong uniform convergence of the k T -occupation time density estimator," Statistical Inference for Stochastic Processes, Springer, vol. 12(3), pages 269-283, October.
    20. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:12:y:2009:i:3:p:251-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.