IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v99y2014i3d10.1007_s11192-014-1241-7.html
   My bibliography  Save this article

A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy

Author

Listed:
  • Inga A. Ivanova

    (Far Eastern Federal University)

  • Loet Leydesdorff

    (University of Amsterdam)

Abstract

A Triple Helix (TH) network of bi- and trilateral relations among universities, industries, and governments can be considered as an ecosystem in which uncertainty can be reduced when functions become synergetic. The functions are based on correlations among distributions of relations, and therefore latent. The correlations span a vector space in which two vectors (P and Q) can be used to represent forward “sending” and reflexive “receiving,” respectively. These two vectors can also be understood in terms of the generation versus reduction of uncertainty in the communication field that results from interactions among the three bi-lateral channels of communication. We specify a system of Lotka–Volterra equations between the vectors that can be solved. Redundancy generation can then be simulated and the results can be decomposed in terms of the TH components. Furthermore, we show that the strength and frequency of the relations are independent parameters in the model. Redundancy generation in TH arrangements can be decomposed using Fourier analysis of the time-series of empirical studies. As an example, the case of co-authorship relations in Japan is re-analyzed. The model allows us to interpret the sinusoidal functions of the Fourier analysis as representing redundancies.

Suggested Citation

  • Inga A. Ivanova & Loet Leydesdorff, 2014. "A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 927-948, June.
  • Handle: RePEc:spr:scient:v:99:y:2014:i:3:d:10.1007_s11192-014-1241-7
    DOI: 10.1007/s11192-014-1241-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1241-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1241-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    2. Loet Leydesdorff & Øivind Strand, 2013. "The Swedish system of innovation: Regional synergies in a knowledge-based economy," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1890-1902, September.
    3. Loet Leydesdorff, 2010. "The communication of meaning and the structuration of expectations: Giddens' “structuration theory” and Luhmann's “self‐organization”," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(10), pages 2138-2150, October.
    4. William McGill, 1954. "Multivariate information transmission," Psychometrika, Springer;The Psychometric Society, vol. 19(2), pages 97-116, June.
    5. Ki-Seok Kwon & Han Woo Park & Minho So & Loet Leydesdorff, 2012. "Has globalization strengthened South Korea’s national research system? National and international dynamics of the Triple Helix of scientific co-authorship relationships in South Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 163-176, January.
    6. Ulanowicz, Robert E., 2009. "The dual nature of ecosystem dynamics," Ecological Modelling, Elsevier, vol. 220(16), pages 1886-1892.
    7. Loet Leydesdorff & Yuan Sun, 2009. "National and international dimensions of the Triple Helix in Japan: University–industry–government versus international coauthorship relations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(4), pages 778-788, April.
    8. Strand, Øivind & Leydesdorff, Loet, 2013. "Where is synergy indicated in the Norwegian innovation system? Triple-Helix relations among technology, organization, and geography," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 471-484.
    9. Loet Leydesdorff & Inga A. Ivanova, 2014. "Mutual redundancies in interhuman communication systems: Steps toward a calculus of processing meaning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(2), pages 386-399, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hig:wpaper:98sti2019 is not listed on IDEAS
    2. Henriette Ruhrmann & Michael Fritsch & Loet Leydesdorff, 2020. "Smart Specialization Strategies at National, Regional, or Local Levels? Synergy and Policy-making in German Systems of Innovation," Jena Economics Research Papers 2020-007, Friedrich-Schiller-University Jena.
    3. Nikolay Egorov & Tatiana Pospelova & Anastasia Yarygina & Elena Klochkova, 2019. "The Assessment of Innovation Development in the Arctic Regions of Russia Based on the Triple Helix Model," Resources, MDPI, vol. 8(2), pages 1-12, April.
    4. Balzhan Orazbayeva & Carolin Plewa & Todd Davey & Victoria Galán-Muros, 2019. "The future of University-Business Cooperation: research and practice priorities," Post-Print hal-02880384, HAL.
    5. Loet Leydesdorff & Inga Ivanova, 2021. "The measurement of “interdisciplinarity” and “synergy” in scientific and extra‐scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 387-402, April.
    6. Saymon Ricardo Oliveira Sousa & Wesley Vieira Silva & Claudimar Pereira Veiga & Roselaine Ruviaro Zanini, 2020. "Theoretical background of innovation in services in small and medium-sized enterprises: literature mapping," Journal of Innovation and Entrepreneurship, Springer, vol. 9(1), pages 1-26, December.
    7. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2019. "The Synergy and Cycle Values in Regional Innovation Systems: The Case of Norway," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 13(1), pages 48-61.
    8. Tatiana Marceda Bach & Luciano Luiz Dalazen & Wesley Vieira da Silva & Alex Antonio Ferraresi & Claudimar Pereira da Veiga, 2019. "Relationship Between Innovation and Performance in Private Companies: Systematic Literature Review," SAGE Open, , vol. 9(2), pages 21582440198, June.
    9. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    10. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2014. "Synergy cycles in the Norwegian innovation system: The relation between synergy and cycle values," Papers 1409.2760, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lengyel, Balázs & Leydesdorff, Loet, 2015. "The Effects of FDI on Innovation Systems in Hungarian Regions: Where is the Synergy Generated?," MPRA Paper 73945, University Library of Munich, Germany.
    2. Porto-Gomez, Igone & Zabala-Iturriagagoitia, Jon Mikel & Leydesdorff, Loet, 2019. "Innovation systems in México: A matter of missing synergies," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    3. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2014. "Synergy cycles in the Norwegian innovation system: The relation between synergy and cycle values," Papers 1409.2760, arXiv.org.
    4. repec:hig:wpaper:98sti2019 is not listed on IDEAS
    5. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2019. "The Synergy and Cycle Values in Regional Innovation Systems: The Case of Norway," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 13(1), pages 48-61.
    6. Loet Leydesdorff & Han Woo Park & Balazs Lengyel, 2014. "A routine for measuring synergy in university–industry–government relations: mutual information as a Triple-Helix and Quadruple-Helix indicator," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 27-35, April.
    7. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    8. Øivind Strand & Inga Ivanova & Loet Leydesdorff, 2017. "Decomposing the Triple-Helix synergy into the regional innovation systems of Norway: firm data and patent networks," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 963-988, May.
    9. Loet Leydesdorff & Ping Zhou, 2014. "Measuring the knowledge-based economy of China in terms of synergy among technological, organizational, and geographic attributes of firms," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1703-1719, March.
    10. Weimin Kang & Shuliang Zhao & Wei Song & Tao Zhuang, 2019. "Triple helix in the science and technology innovation centers of China from the perspective of mutual information: a comparative study between Beijing and Shanghai," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 921-940, March.
    11. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    12. Mêgnigbêto, Eustache, 2018. "Modelling the Triple Helix of university-industry-government relationships with game theory: Core, Shapley value and nucleolus as indicators of synergy within an innovation system," Journal of Informetrics, Elsevier, vol. 12(4), pages 1118-1132.
    13. Eustache Mêgnigbêto, 2018. "Correlation Between Transmission Power and Some Indicators Used to Measure the Knowledge-Based Economy: Case of Six OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(4), pages 1168-1183, December.
    14. Loet Leydesdorff, 2015. "Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2197-2214, December.
    15. Lee, Young Hoon & Kim, YoungJun, 2016. "Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 93-105.
    16. Xiaojun Hu & Xian Li & Ronald Rousseau, 2021. "Mathematical reflections on Triple Helix calculations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8581-8587, October.
    17. Loet Leydesdorff, 2011. "“Structuration” by intellectual organization: the configuration of knowledge in relations among structural components in networks of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 499-520, August.
    18. Chung Joo Chung, 2014. "An analysis of the status of the Triple Helix and university–industry–government relationships in Asia," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 139-149, April.
    19. Marina Van Geenhuizen & Pieter Stek, 2015. "Mapping innovation in the global photovoltaic industry: a bibliometric approach to cluster identification and analysis," ERSA conference papers ersa15p697, European Regional Science Association.
    20. Arranz, Nieves & Arroyabe, Marta F. & Schumann, Martin, 2020. "The role of NPOs and international actors in the national innovation system: A network-based approach," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    21. Loet Leydesdorff & Igone Porto-Gomez, 2019. "Measuring the expected synergy in Spanish regional and national systems of innovation," The Journal of Technology Transfer, Springer, vol. 44(1), pages 189-209, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:99:y:2014:i:3:d:10.1007_s11192-014-1241-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.