IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v9y2018i4d10.1007_s13132-016-0408-2.html
   My bibliography  Save this article

Correlation Between Transmission Power and Some Indicators Used to Measure the Knowledge-Based Economy: Case of Six OECD Countries

Author

Listed:
  • Eustache Mêgnigbêto

    (Bureau d’études et de recherches en science de l’information
    Faculty of Social Sciences, University of Antwerp)

Abstract

In this paper, we study the correlation between the transmission power and some indicators used to measure the knowledge-based economy. For the case study, we select six OECD countries (USA, Canada, France, Germany, Japan and South Korea) and six indicators (gross domestic expenditure for research and development (GERD), number of researchers, gross domestic product (GDP) growth rate, GDP per capita, Human Development Index (HDI) and total factor productivity (TFP)). The time series of the transmission power over a 10-year period (2001–2010) are built on the basis of publication data collected from the Web of Science. The correlation between transmission power and the selected indicators is computed. Results show that Japan and South Korea exhibit a positive strong correlation between transmission power and GERD on one hand and transmission power and number of researchers on the other hand. These two countries have the same pattern as regarding the transmission power and each of the selected indicators; other countries do not show any comparable pattern. The study concludes that the transmission power computed at national level only is not sufficient to measure the extent to which an economy is knowledge-based, because it does not take into account the synergy contributed at international level by a nation innovation actor.

Suggested Citation

  • Eustache Mêgnigbêto, 2018. "Correlation Between Transmission Power and Some Indicators Used to Measure the Knowledge-Based Economy: Case of Six OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(4), pages 1168-1183, December.
  • Handle: RePEc:spr:jknowl:v:9:y:2018:i:4:d:10.1007_s13132-016-0408-2
    DOI: 10.1007/s13132-016-0408-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-016-0408-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-016-0408-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paschalis A. Arvanitidis & George Petrakos, 2011. "Defining Knowledge-Driven Economic Dynamism in the World Economy: A Methodological Perspective," Advances in Spatial Science, in: Peter Nijkamp & Iulia Siedschlag (ed.), Innovation, Growth and Competitiveness, chapter 0, pages 15-39, Springer.
    2. Fred Y. Ye & Susan S. Yu & Loet Leydesdorff, 2013. "The Triple Helix of university‐industry‐government relations at the country level and its dynamic evolution under the pressures of globalization," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(11), pages 2317-2325, November.
    3. Michel Zitt & Elise Bassecoulard & Yoshiko Okubo, 2000. "Shadows of the Past in International Cooperation: Collaboration Profiles of the Top Five Producers of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(3), pages 627-657, March.
    4. Ki-Seok Kwon & Han Woo Park & Minho So & Loet Leydesdorff, 2012. "Has globalization strengthened South Korea’s national research system? National and international dynamics of the Triple Helix of scientific co-authorship relationships in South Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 163-176, January.
    5. Loet Leydesdorff & Yuan Sun, 2009. "National and international dimensions of the Triple Helix in Japan: University–industry–government versus international coauthorship relations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(4), pages 778-788, April.
    6. Loet Leydesdorff, 2003. "The mutual information of university-industry-government relations: An indicator of the Triple Helix dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 445-467, October.
    7. Liu, Yuxian & Rousseau, Ronald & Guns, Raf, 2013. "A layered framework to study collaboration as a form of knowledge sharing and diffusion," Journal of Informetrics, Elsevier, vol. 7(3), pages 651-664.
    8. Han Woo Park & Heung Deug Hong & Loet Leydesdorff, 2005. "A comparison of the knowledge-based innovation systems in the economies of South Korea and the Netherlands using Triple Helix indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(1), pages 3-27, October.
    9. Loet Leydesdorff & Evgeniy Perevodchikov & Alexander Uvarov, 2015. "Measuring triple-helix synergy in the Russian innovation systems at regional, provincial, and national levels," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(6), pages 1229-1238, June.
    10. Raf Guns & Ronald Rousseau, 2014. "Recommending research collaborations using link prediction and random forest classifiers," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1461-1473, November.
    11. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    12. Benoît Godin, 2006. "The Knowledge-Based Economy: Conceptual Framework or Buzzword?," The Journal of Technology Transfer, Springer, vol. 31(1), pages 17-30, January.
    13. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2014. "Synergy cycles in the Norwegian innovation system: The relation between synergy and cycle values," Papers 1409.2760, arXiv.org.
    14. Loet Leydesdorff & Inga A. Ivanova, 2014. "Mutual redundancies in interhuman communication systems: Steps toward a calculus of processing meaning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(2), pages 386-399, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mêgnigbêto, Eustache, 2018. "Modelling the Triple Helix of university-industry-government relationships with game theory: Core, Shapley value and nucleolus as indicators of synergy within an innovation system," Journal of Informetrics, Elsevier, vol. 12(4), pages 1118-1132.
    2. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    3. Weimin Kang & Shuliang Zhao & Wei Song & Tao Zhuang, 2019. "Triple helix in the science and technology innovation centers of China from the perspective of mutual information: a comparative study between Beijing and Shanghai," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 921-940, March.
    4. Porto-Gomez, Igone & Zabala-Iturriagagoitia, Jon Mikel & Leydesdorff, Loet, 2019. "Innovation systems in México: A matter of missing synergies," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    5. repec:hig:wpaper:98sti2019 is not listed on IDEAS
    6. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2019. "The Synergy and Cycle Values in Regional Innovation Systems: The Case of Norway," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 13(1), pages 48-61.
    7. Sujin Choi & Joshua Yang & Han Park, 2015. "Quantifying the Triple Helix relationship in scientific research: statistical analyses on the dividing pattern between developed and developing countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1381-1396, July.
    8. Yi Zhang & Kaihua Chen & Guilong Zhu & Richard C. M. Yam & Jiancheng Guan, 2016. "Inter-organizational scientific collaborations and policy effects: an ego-network evolutionary perspective of the Chinese Academy of Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1383-1415, September.
    9. Lee, Young Hoon & Kim, YoungJun, 2016. "Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 93-105.
    10. Loet Leydesdorff & Han Woo Park & Balazs Lengyel, 2014. "A routine for measuring synergy in university–industry–government relations: mutual information as a Triple-Helix and Quadruple-Helix indicator," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 27-35, April.
    11. Chung Joo Chung, 2014. "An analysis of the status of the Triple Helix and university–industry–government relationships in Asia," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 139-149, April.
    12. Hyejin Park & Han Woo Park, 2018. "Research evaluation of Asian countries using altmetrics: comparing South Korea, Japan, Taiwan, Singapore, and China," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 771-788, November.
    13. Pieter Stek & Marina Geenhuizen, 2015. "Measuring the dynamics of an innovation system using patent data: a case study of South Korea, 2001–2010," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1325-1343, July.
    14. Ssu-Han Chen & Mu-Hsuan Huang & Dar-Zen Chen, 2013. "Driving factors of external funding and funding effects on academic innovation performance in university–industry–government linkages," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1077-1098, March.
    15. Inga Ivanova & Oivind Strand & Loet Leydesdorff, 2014. "Synergy cycles in the Norwegian innovation system: The relation between synergy and cycle values," Papers 1409.2760, arXiv.org.
    16. Hyeonchae Yang & Woo-Sung Jung, 2015. "A strategic management approach for Korean public research institutes based on bibliometric investigation," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1437-1464, July.
    17. Park, Han Woo & Leydesdorff, Loet, 2010. "Longitudinal trends in networks of university-industry-government relations in South Korea: The role of programmatic incentives," Research Policy, Elsevier, vol. 39(5), pages 640-649, June.
    18. Xia Fan & Xiaowan Yang & Liming Chen, 2015. "Diversified resources and academic influence: patterns of university–industry collaboration in Chinese research-oriented universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 489-509, August.
    19. Xiaojun Hu & Xian Li & Ronald Rousseau, 2021. "Mathematical reflections on Triple Helix calculations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8581-8587, October.
    20. Inga A. Ivanova & Loet Leydesdorff, 2014. "A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 927-948, June.
    21. Mêgnigbêto, Eustache, 2014. "Efficiency, unused capacity and transmission power as indicators of the Triple Helix of university–industry–government relationships," Journal of Informetrics, Elsevier, vol. 8(1), pages 284-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:9:y:2018:i:4:d:10.1007_s13132-016-0408-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.