IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v97y2013i2d10.1007_s11192-013-1008-6.html
   My bibliography  Save this article

A concept for inferring ‘frontier research’ in grant proposals

Author

Listed:
  • Marianne Hörlesberger

    (AIT Austrian Institute of Technology GmbH)

  • Ivana Roche

    (CNRS, Institut de l’Information Scientifique et Technique)

  • Dominique Besagni

    (CNRS, Institut de l’Information Scientifique et Technique)

  • Thomas Scherngell

    (AIT Austrian Institute of Technology GmbH)

  • Claire François

    (CNRS, Institut de l’Information Scientifique et Technique)

  • Pascal Cuxac

    (CNRS, Institut de l’Information Scientifique et Technique)

  • Edgar Schiebel

    (AIT Austrian Institute of Technology GmbH)

  • Michel Zitt

    (INRA
    Observatoire des Sciences et des Techniques (OST))

  • Dirk Holste

    (AIT Austrian Institute of Technology GmbH)

Abstract

This paper discusses a concept for inferring attributes of ‘frontier research’ in peer-reviewed research proposals under the popular scheme of the European Research Council (ERC). The concept serves two purposes: firstly to conceptualize, define and operationalize in scientometric terms attributes of frontier research; and secondly to build and compare outcomes of a statistical model with the review decision in order to obtain further insight and reflect upon the influence of frontier research in the peer-review process. To this end, indicators across scientific disciplines and in accord with the strategic definition of frontier research by the ERC are elaborated, exploiting textual proposal information and other scientometric data of grant applicants. Subsequently, a suitable model is formulated to measure ex-post the influence of attributes of frontier research on the decision probability of a proposal to be accepted. We present first empirical data as proof of concept for inferring frontier research in grant proposals. Ultimately the concept is aiming at advancing the methodology to deliver signals for monitoring the effectiveness of peer-review processes.

Suggested Citation

  • Marianne Hörlesberger & Ivana Roche & Dominique Besagni & Thomas Scherngell & Claire François & Pascal Cuxac & Edgar Schiebel & Michel Zitt & Dirk Holste, 2013. "A concept for inferring ‘frontier research’ in grant proposals," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 129-148, November.
  • Handle: RePEc:spr:scient:v:97:y:2013:i:2:d:10.1007_s11192-013-1008-6
    DOI: 10.1007/s11192-013-1008-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1008-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1008-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    3. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    4. Peter van den Besselaar & Loet Leydesdorff, 2009. "Past performance, peer review and project selection: a case study in the social and behavioral sciences," Research Evaluation, Oxford University Press, vol. 18(4), pages 273-288, October.
    5. Richard Klavans & Kevin W. Boyack, 2006. "Quantitative evaluation of large maps of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 475-499, September.
    6. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, December.
    7. Primož Južnič & Stojan Pečlin & Matjaž Žaucer & Tilen Mandelj & Miro Pušnik & Franci Demšar, 2010. "Scientometric indicators: peer-review, bibliometric methods and conflict of interests," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(2), pages 429-441, November.
    8. David Adam, 2002. "The counting house," Nature, Nature, vol. 415(6873), pages 726-729, February.
    9. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    10. Edgar Schiebel & Marianne Hörlesberger & Ivana Roche & Claire François & Dominique Besagni, 2010. "An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 765-781, June.
    11. Naoki Shibata & Yuya Kajikawa & Yoshiyuki Takeda & Katsumori Matsushima, 2009. "Comparative study on methods of detecting research fronts using different types of citation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 571-580, March.
    12. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    13. Smita Srinivas & Kimmo Viljamaa, 2008. "Emergence of Economic Institutions: Analysing the Third Role of Universities in Turku, Finland," Regional Studies, Taylor & Francis Journals, vol. 42(3), pages 323-341, April.
    14. Anton J. Nederhof, 2006. "Bibliometric monitoring of research performance in the Social Sciences and the Humanities: A Review," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(1), pages 81-100, January.
    15. Byungun Yoon & Sungjoo Lee & Gwanghee Lee, 2010. "Development and application of a keyword-based knowledge map for effective R&D planning," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 803-820, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristian Mejia & Yuya Kajikawa, 2018. "Using acknowledgement data to characterize funding organizations by the types of research sponsored: the case of robotics research," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 883-904, March.
    2. Balázs Győrffy & Andrea Magda Nagy & Péter Herman & Ádám Török, 2018. "Factors influencing the scientific performance of Momentum grant holders: an evaluation of the first 117 research groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 409-426, October.
    3. Li, Kai & Yan, Erjia, 2019. "Are NIH-funded publications fulfilling the proposed research? An examination of concept-matchedness between NIH research grants and their supported publications," Journal of Informetrics, Elsevier, vol. 13(1), pages 226-237.
    4. Kevin W. Boyack & Caleb Smith & Richard Klavans, 2018. "Toward predicting research proposal success," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 449-461, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    2. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    3. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    4. Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
    5. Mu-hsuan Huang & Chia-Pin Chang, 2015. "A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2041-2057, March.
    6. Yang, Siluo & Wang, Feifei, 2015. "Visualizing information science: Author direct citation analysis in China and around the world," Journal of Informetrics, Elsevier, vol. 9(1), pages 208-225.
    7. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    8. Zabavnik, Darja & Verbič, Miroslav, 2021. "Relationship between the financial and the real economy: A bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 55-75.
    9. Moshe Blidstein & Maayan Zhitomirsky-Geffet, 2022. "Towards a new generic framework for citation network generation and analysis in the humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4275-4297, July.
    10. Cai, Fang & Zheng, Wen-Jiang & Zhang, Xiao & Ji, Jiu-Ming & Zhou, Wei-Xing, 2019. "Comparing selection strategies for engineering research hotspots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Adam Kozakiewicz & Andrzej Lis, 2021. "Energy Efficiency in Cloud Computing: Exploring the Intellectual Structure of the Research Field and Its Research Fronts with Direct Citation Analysis," Energies, MDPI, vol. 14(21), pages 1-17, October.
    12. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    13. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    14. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    15. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    16. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    17. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    18. Ignacio Rodríguez-Rodríguez & José-Víctor Rodríguez & Niloofar Shirvanizadeh & Andrés Ortiz & Domingo-Javier Pardo-Quiles, 2021. "Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    19. Xinhai Liu & Wolfgang Glänzel & Bart De Moor, 2011. "Hybrid clustering of multi-view data via Tucker-2 model and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 819-839, September.
    20. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:97:y:2013:i:2:d:10.1007_s11192-013-1008-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.