Research trends analysis by comparing data mining and customer relationship management through bibliometric methodology
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-011-0353-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- van Raan, A. F. J. & van Leeuwen, Th. N., 2002. "Assessment of the scientific basis of interdisciplinary, applied research: Application of bibliometric methods in Nutrition and Food Research," Research Policy, Elsevier, vol. 31(4), pages 611-632, May.
- Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
- Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
- David Adam, 2002. "The counting house," Nature, Nature, vol. 415(6873), pages 726-729, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei Liu & Zongshui Wang & Hong Zhao, 2020. "Comparative study of customer relationship management research from East Asia, North America and Europe: A bibliometric overview," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(4), pages 735-757, December.
- Silvio Addolorato & Ferran Calabuig & Vicente Prado-Gascó & Leonor Gallardo & Jorge García-Unanue, 2019. "Bibliometric Analysis of Fitness Equipment: How Scientific Focuses Affect Life-Cycle Approaches and Sustainable Ways of Development," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
- Mohammad Rabiei & Seyyed-Mahdi Hosseini-Motlagh & Abdorrahman Haeri, 2017. "Using text mining techniques for identifying research gaps and priorities: a case study of the environmental science in Iran," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 815-842, February.
- Escuadra, Catherine Joy & Magallanes, Krizia & Lee, Sunbok & Chung, Jae Young, 2023. "Systematic analysis on school violence and bullying using data mining," Children and Youth Services Review, Elsevier, vol. 150(C).
- Jabłońska-Sabuka, Matylda & Sitarz, Robert & Kraslawski, Andrzej, 2014. "Forecasting research trends using population dynamics model with Burgers’ type interaction," Journal of Informetrics, Elsevier, vol. 8(1), pages 111-122.
- Jamali, Seyedh Mahboobeh & Md Zain, Ahmad Nurulazam & Samsudin, Mohd Ali & Ale Ebrahim, Nader, 2015. "Publication Trends in Physics Education: A Bibliometric study," MPRA Paper 79524, University Library of Munich, Germany, revised 2015.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
- Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
- Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
- Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
- En-Der Su & Shih-Ming Huang, 2010. "Comparing Firm Failure Predictions Between Logit, KMV, and ZPP Models: Evidence from Taiwan’s Electronics Industry," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 209-239, September.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
- Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
- Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
- Wu, Desheng(Dash) & Liang, Liang & Yang, Zijiang, 2008. "Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 206-220, September.
- Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
- Andrea Bedin & Monica Billio & Michele Costola & Loriana Pelizzon, 2019.
"Credit Scoring in SME Asset-Backed Securities: An Italian Case Study,"
JRFM, MDPI, vol. 12(2), pages 1-28, May.
- Bedin, Andrea & Billio, Monica & Costola, Michele & Pelizzon, Loriana, 2019. "Credit scoring in SME asset-backed securities: An Italian case study," SAFE Working Paper Series 262, Leibniz Institute for Financial Research SAFE.
- fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
- Su-Han Woo & Min-Su Kwon & Kum Fai Yuen, 2021. "Financial determinants of credit risk in the logistics and shipping industries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 268-290, June.
- Romero Martínez, Mariano & Carmona Ibáñez, Pedro & Pozuelo Campillo, José, 2021. "Utilidad del Deep Learning en la predicción del fracaso empresarial en el ámbito europeo || The usefulness of Deep Learning in the prediction of business failure at the European level," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 392-414, December.
- Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
- Ioannis Anagnostopoulos & Anas Rizeq, 2021. "Conventional and neural network target‐matching methods dynamics: The information technology mergers and acquisitions market in the USA," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 97-118, April.
- Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
- Malhotra, Rashmi & Malhotra, D. K., 2003. "Evaluating consumer loans using neural networks," Omega, Elsevier, vol. 31(2), pages 83-96, April.
- Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
More about this item
Keywords
Data mining; Customer relationship management; Research trend analysis; Bibliometric methodology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:87:y:2011:i:3:d:10.1007_s11192-011-0353-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.