IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v56y2003i1d10.1023_a1021994422916.html
   My bibliography  Save this article

The diffusion of scientific publications: The case of Econometrica, 1987

Author

Listed:
  • Philip Hans Franses

    (Erasmus University Rotterdam)

Abstract

This paper documents that salient features of (time series of annual) citations to scientific publications might be captured by a Bass type diffusion model. This is particularly useful as it allows for a comparison of these features across journals, across disciplines and over time. For the illustrative case of Econometrica 1987, it is found that the peak in citations occurs at 6.5 years, on average. Also, it is found that after 14 years there is only a little gap between cumulative citations and the estimated total cumulative amount, suggesting that on average the impact of these articles lasts for about 15 years or so. Finally, it appears that these features can partly be explained by the size of the articles, as it is found that longer papers get more citations and peak later.

Suggested Citation

  • Philip Hans Franses, 2003. "The diffusion of scientific publications: The case of Econometrica, 1987," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(1), pages 29-42, January.
  • Handle: RePEc:spr:scient:v:56:y:2003:i:1:d:10.1023_a:1021994422916
    DOI: 10.1023/A:1021994422916
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021994422916
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021994422916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Parker, Philip M., 1994. "Aggregate diffusion forecasting models in marketing: A critical review," International Journal of Forecasting, Elsevier, vol. 10(2), pages 353-380, September.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Christophe Van den Bulte & Gary L. Lilien, 1997. "Bias and Systematic Change in the Parameter Estimates of Macro-Level Diffusion Models," Marketing Science, INFORMS, vol. 16(4), pages 338-353.
    4. Hendrik P. Van Dalen & Kène Henkens, 2001. "What makes a scientific article influential? The case of demographers," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 455-482, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fok, Dennis & Franses, Philip Hans, 2007. "Modeling the diffusion of scientific publications," Journal of Econometrics, Elsevier, vol. 139(2), pages 376-390, August.
    2. Erjen Van Nierop, 2009. "Why do statistics journals have low impact factors?," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 52-62, February.
    3. Franses, Ph.H.B.F., 2009. "Forecasting Sales," Econometric Institute Research Papers EI 2009-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Richard S. J. Tol, 2011. "Credit where credit’s due: accounting for co-authorship in citation counts," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 291-299, October.
    5. Liu, Yuxian & Rousseau, Ronald, 2008. "Definitions of time series in citation analysis with special attention to the h-index," Journal of Informetrics, Elsevier, vol. 2(3), pages 202-210.
    6. Boswijk, H. Peter & Franses, Philip Hans & van Dijk, Dick, 2010. "Cointegration in a historical perspective," Journal of Econometrics, Elsevier, vol. 158(1), pages 156-159, September.
    7. García-Suaza, Andrés & Otero, Jesus & Winkelmann, Rainer, 2018. "Early Career Research Production in Economics: Does Mentoring Matter?," IZA Discussion Papers 11976, Institute of Labor Economics (IZA).
    8. Fragiskos Archontakis & Rocco Mosconi, 2021. "Søren Johansen and Katarina Juselius: A Bibliometric Analysis of Citations through Multivariate Bass Models," Econometrics, MDPI, vol. 9(3), pages 1-28, August.
    9. Rousseau, Ronald & Hu, Xiaojun, 2013. "Two time series, their meaning and some applications," Journal of Informetrics, Elsevier, vol. 7(3), pages 603-610.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    2. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    3. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
    4. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    5. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    6. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    7. Kristof Decock & Koenraad Debackere & Anne- Mieke Vandamme & Bart Looy, 2020. "Scenario-driven forecasting: modeling peaks and paths. Insights from the COVID-19 pandemic in Belgium," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2703-2715, September.
    8. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    9. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    10. Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.
    11. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    12. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    13. Fok, Dennis & Franses, Philip Hans, 2007. "Modeling the diffusion of scientific publications," Journal of Econometrics, Elsevier, vol. 139(2), pages 376-390, August.
    14. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    15. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    16. Desiraju, Ramarao & Nair, Harikesh S. & Chintagunta, Pradeep, 2004. "Diffusion of New Pharmaceutical Drugs in Developing and Developed Nations," Research Papers 1950, Stanford University, Graduate School of Business.
    17. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Sang-Gun Lee & Eui-bang Lee & Chang-Gyu Yang, 2014. "Strategies for ICT product diffusion: the case of the Korean mobile communications market," Service Business, Springer;Pan-Pacific Business Association, vol. 8(1), pages 65-81, March.
    19. Franses, Ph.H.B.F., 2009. "Forecasting Sales," Econometric Institute Research Papers EI 2009-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:56:y:2003:i:1:d:10.1023_a:1021994422916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.