IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v113y2017i1d10.1007_s11192-017-2485-9.html
   My bibliography  Save this article

Exploring dynamic research interest and academic influence for scientific collaborator recommendation

Author

Listed:
  • Xiangjie Kong

    (Dalian University of Technology)

  • Huizhen Jiang

    (Dalian University of Technology)

  • Wei Wang

    (Dalian University of Technology)

  • Teshome Megersa Bekele

    (Dalian University of Technology)

  • Zhenzhen Xu

    (Dalian University of Technology)

  • Meng Wang

    (Dalian University of Technology)

Abstract

In many cases, it is time-consuming for researchers to find proper collaborators who can provide researching guidance besides simply collaborating. The Most Beneficial Collaborators (MBCs), who have high academic level and relevant research topics, can genuinely help researchers to enrich their research. However, how can we find the MBCs? In this paper, we propose a most Beneficial Collaborator Recommendation model called BCR. BCR learns on researchers’ publications and associates three academic features: topic distribution of research interest, interest variation with time and researchers’ impact in collaborators network. We run a topic model on researchers’ publications in each year for topic clustering. The generated topic distribution matrix is fixed by a time function to fit the interest dynamic transformation. The academic social impact is also considered to mine the most prolific researchers. Finally, a TopN MBCs recommendation list is generated according to the computed score. Extensive experiments on a dataset with citation network demonstrate that, in comparison to relevant baseline approaches, our BCR performs better in terms of precision, recall, F1 score and the recommendation quality.

Suggested Citation

  • Xiangjie Kong & Huizhen Jiang & Wei Wang & Teshome Megersa Bekele & Zhenzhen Xu & Meng Wang, 2017. "Exploring dynamic research interest and academic influence for scientific collaborator recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 369-385, October.
  • Handle: RePEc:spr:scient:v:113:y:2017:i:1:d:10.1007_s11192-017-2485-9
    DOI: 10.1007/s11192-017-2485-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2485-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2485-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip M. Davis & Michael J. Fromerth, 2007. "Does the arXiv lead to higher citations and reduced publisher downloads for mathematics articles?," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(2), pages 203-215, May.
    2. A. Hernando & D. Villuendas & C. Vesperinas & M. Abad & A. Plastino, 2010. "Unravelling the size distribution of social groups with information theory in complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(1), pages 87-97, July.
    3. Gad Saad, 2006. "Exploring the h-index at the author and journal levels using bibliometric data of productive consumer scholars and business-related journals respectively," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 117-120, October.
    4. Irving Fisher Committee, 2017. "Big Data," IFC Bulletins, Bank for International Settlements, number 44.
    5. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    6. Xiangjie Kong & Huizhen Jiang & Zhuo Yang & Zhenzhen Xu & Feng Xia & Amr Tolba, 2016. "Exploiting Publication Contents and Collaboration Networks for Collaborator Recommendation," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
    7. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samreen Ayaz & Nayyer Masood & Muhammad Arshad Islam, 2018. "Predicting scientific impact based on h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 993-1010, March.
    2. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    3. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    4. Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
    5. Qi Zhang & Rui Mao & Rui Li, 2019. "Spatial–temporal restricted supervised learning for collaboration recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1497-1517, June.
    6. Guoqiang Liang & Haiyan Hou & Qiao Chen & Zhigang Hu, 2020. "Diffusion and adoption: an explanatory model of “question mark” and “rising star” articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 219-232, July.
    7. Diana Purwitasari & Chastine Fatichah & Surya Sumpeno & Christian Steglich & Mauridhi Hery Purnomo, 2020. "Identifying collaboration dynamics of bipartite author-topic networks with the influences of interest changes," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1407-1443, March.
    8. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
    9. Kong, Xiangjie & Mao, Mengyi & Jiang, Huizhen & Yu, Shuo & Wan, Liangtian, 2019. "How does collaboration affect researchers’ positions in co-authorship networks?," Journal of Informetrics, Elsevier, vol. 13(3), pages 887-900.
    10. Chaocheng He & Jiang Wu & Qingpeng Zhang, 2022. "Proximity‐aware research leadership recommendation in research collaboration via deep neural networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 70-89, January.
    11. Xiaowen Xi & Jiaqi Wei & Ying Guo & Weiyu Duan, 2022. "Academic collaborations: a recommender framework spanning research interests and network topology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6787-6808, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongjun Zhu & Lihong Quan & Pei‐Ying Chen & Meen Chul Kim & Chao Che, 2023. "Predicting coauthorship using bibliographic network embedding," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(4), pages 388-401, April.
    2. Christopher McCarty & James W. Jawitz & Allison Hopkins & Alex Goldman, 2013. "Predicting author h-index using characteristics of the co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 467-483, August.
    3. Lu Huang & Xiang Chen & Yi Zhang & Yihe Zhu & Suyi Li & Xingxing Ni, 2021. "Dynamic network analytics for recommending scientific collaborators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 8789-8814, November.
    4. Wei Wang & Shuo Yu & Teshome Megersa Bekele & Xiangjie Kong & Feng Xia, 2017. "Scientific collaboration patterns vary with scholars’ academic ages," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 329-343, July.
    5. Jorge Cerdeira & João Mesquita & Elizabeth S. Vieira, 2023. "International research collaboration: is Africa different? A cross-country panel data analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2145-2174, April.
    6. Manning, Stephan, 2017. "The rise of project network organizations: Building core teams and flexible partner pools for interorganizational projects," Research Policy, Elsevier, vol. 46(8), pages 1399-1415.
    7. Hayashi, Takayuki, 2003. "Effect of R&D programmes on the formation of university-industry-government networks: comparative analysis of Japanese R&D programmes," Research Policy, Elsevier, vol. 32(8), pages 1421-1442, September.
    8. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    9. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    10. Eustache Mêgnigbêto, 2018. "Correlation Between Transmission Power and Some Indicators Used to Measure the Knowledge-Based Economy: Case of Six OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(4), pages 1168-1183, December.
    11. Belén Álvarez-Bornstein & Adrián A. Díaz-Faes & María Bordons, 2019. "What characterises funded biomedical research? Evidence from a basic and a clinical domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 805-825, May.
    12. Per O. Seglen & Dag W. Aksnes, 2000. "Scientific Productivity and Group Size: A Bibliometric Analysis of Norwegian Microbiological Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(1), pages 125-143, August.
    13. Craig Boardman & Barry Bozeman, 2006. "Implementing a 'bottom-up,' multi-sector research collaboration: The case of the Texas air quality study," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(1), pages 51-69.
    14. Hoekman, Jarno & Rake, Bastian, 2024. "Geography of authorship: How geography shapes authorship attribution in big team science," Research Policy, Elsevier, vol. 53(2).
    15. Corsini, Alberto & Pezzoni, Michele, 2023. "Does grant funding foster research impact? Evidence from France," Journal of Informetrics, Elsevier, vol. 17(4).
    16. Mohammadi, Ali & Broström, Anders & Franzoni, Chiara, 2015. "Work Force Composition and Innovation: How Diversity in Employees’ Ethnical and Disciplinary Backgrounds Facilitates Knowledge Re-combination," Working Paper Series in Economics and Institutions of Innovation 413, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    17. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    18. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    19. Feng Li & Yong Yi & Xiaolong Guo & Wei Qi, 2012. "Performance evaluation of research universities in Mainland China, Hong Kong and Taiwan: based on a two-dimensional approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 531-542, February.
    20. Laurent R. Bergé, 2017. "Network proximity in the geography of research collaboration," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 785-815, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:113:y:2017:i:1:d:10.1007_s11192-017-2485-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.