IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v69y2018i2p329-342.html
   My bibliography  Save this article

Topic diffusion analysis of a weighted citation network in biomedical literature

Author

Listed:
  • Munui Kim
  • Injun Baek
  • Min Song

Abstract

In this study, we propose a framework for detecting topic evolutions in weighted citation networks. Citation networks are important in studying knowledge flows; however, citation network analysis has primarily focused on binary networks in which the individual citation influences of each cited paper in a citing paper are considered identical, even though not all cited papers have a significant influence on the cited publication. Accordingly, it is necessary to build and analyze a citation network comprising scholarly publications that notably impact one another, thus identifying topic evolution in a more precise manner. To measure the strength of citation influence and identify paper topics, we employ a citation influence topic model primarily based on topical inheritance between cited and citing papers. Using scholarly publications in the field of the protein p53 as a case study, we build a citation network, filter it using citation influence values, and examine the diffusion of topics not only in the field but also in the subfields of p53.

Suggested Citation

  • Munui Kim & Injun Baek & Min Song, 2018. "Topic diffusion analysis of a weighted citation network in biomedical literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(2), pages 329-342, February.
  • Handle: RePEc:bla:jinfst:v:69:y:2018:i:2:p:329-342
    DOI: 10.1002/asi.23960
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.23960
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.23960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    2. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Xu, Haiyun & Yang, Guancan, 2022. "A semantic main path analysis method to identify multiple developmental trajectories," Journal of Informetrics, Elsevier, vol. 16(2).
    3. Chao Min & Qingyu Chen & Erjia Yan & Yi Bu & Jianjun Sun, 2021. "Citation cascade and the evolution of topic relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(1), pages 110-127, January.
    4. Fargher, Neil & Wee, Marvin, 2019. "The impact of Ball and Brown (1968) on generations of research," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 55-72.
    5. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    6. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    7. Kim, Erin H.J. & Jeong, Yoo Kyung & Kim, YongHwan & Song, Min, 2022. "Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction," Journal of Informetrics, Elsevier, vol. 16(1).
    8. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    9. Minchul Lee & Min Song, 2020. "Incorporating citation impact into analysis of research trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1191-1224, August.
    10. Huang, Chen-Hao & Liu, John S. & Ho, Mei Hsiu-Ching & Chou, Tzu-Chuan, 2022. "Towards more convergent main paths: A relevance-based approach," Journal of Informetrics, Elsevier, vol. 16(3).
    11. Xinyuan Zhang & Qing Xie & Chaemin Song & Min Song, 2022. "Mining the evolutionary process of knowledge through multiple relationships between keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2023-2053, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:69:y:2018:i:2:p:329-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.