IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i6d10.1007_s11192-024-05012-4.html
   My bibliography  Save this article

Predicting collaborative relationship among scholars by integrating scholars’ content-based and structure-based features

Author

Listed:
  • Xiuxiu Li

    (Northeast Forestry University)

  • Mingyang Wang

    (Northeast Forestry University)

  • Xu Liu

    (Northeast Forestry University)

Abstract

Academic collaboration can break through the geographical limitations of scholars and promote academic output among scholars. Academic big data will provide an important data source for more comprehensive and accurate modeling scholars due to the coexistence environment of various academic entities. Based on academic big data, an end-to-end model HCSP was proposed for predicting collaborative relationships among scholars. HCSP models scholars from two aspects: content-based features and structure-based features, and calculate the similarity between scholars based on this to predict whether there will be academic collaboration between scholars. When learning the content-based features of scholars, HCSP utilizes LSTM and multi-head attention mechanism to extract the overall and recent research interests of scholars, to capture the diversity of scholars’ research interests. When learning the structure-based features of scholars, HCSP adopts a subgraph sampling strategy based on meta paths to model the structural features of scholar nodes in heterogeneous academic network. By integrating scholars’ content-based and structure-based features, HCSP calculates the similarity between scholars to determine whether there will be a collaborative relationship between them. The experimental results indicate that the HCSP model achieves better prediction performance compared to the baseline models. It can be seen that integrating scholars’ content-based and structure-based characteristics can indeed provide a richer and more effective modeling basis for predicting their academic collaborative relationships.

Suggested Citation

  • Xiuxiu Li & Mingyang Wang & Xu Liu, 2024. "Predicting collaborative relationship among scholars by integrating scholars’ content-based and structure-based features," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3225-3244, June.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05012-4
    DOI: 10.1007/s11192-024-05012-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05012-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05012-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaowen Xi & Jiaqi Wei & Ying Guo & Weiyu Duan, 2022. "Academic collaborations: a recommender framework spanning research interests and network topology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6787-6808, November.
    2. Xiaoling Sun & Hongfei Lin & Kan Xu & Kun Ding, 2015. "How we collaborate: characterizing, modeling and predicting scientific collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 43-60, July.
    3. Lu Huang & Xiang Chen & Yi Zhang & Yihe Zhu & Suyi Li & Xingxing Ni, 2021. "Dynamic network analytics for recommending scientific collaborators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 8789-8814, November.
    4. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).
    5. Yan Qi & Xin Zhang & Zhengyin Hu & Bin Xiang & Ran Zhang & Shu Fang, 2022. "Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5519-5550, September.
    6. Xie, Qing & Zhang, Xinyuan & Kim, Giyeong & Song, Min, 2022. "Exploring the influence of coauthorship with top scientists on researchers’ affiliation, research topic, productivity, and impact," Journal of Informetrics, Elsevier, vol. 16(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jing & Yu, Qian, 2024. "Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    2. Chi Jiang & Xiao Ma & Jiangfeng Zeng & Yin Zhang & Tingting Yang & Qiumiao Deng, 2023. "TAPRec: time-aware paper recommendation via the modeling of researchers’ dynamic preferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3453-3471, June.
    3. Ting Xiong & Liang Zhou & Ying Zhao & Xiaojuan Zhang, 2022. "Mining semantic information of co-word network to improve link prediction performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 2981-3004, June.
    4. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    5. Yi Zhang & Chengzhi Zhang & Philipp Mayr & Arho Suominen, 2022. "An editorial of “AI + informetrics”: multi-disciplinary interactions in the era of big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6503-6507, November.
    6. Sun, Xiaoling & Ding, Kun & Lin, Yuan, 2016. "Mapping the evolution of scientific fields based on cross-field authors," Journal of Informetrics, Elsevier, vol. 10(3), pages 750-761.
    7. Gang Chen & Wen-Wen Yan & Xi-Yu Wang & Qingshan Ni & Yang Xiang & Xuhu Mao & Juan-Juan Yue, 2024. "The relationship between coauthorship and the research impact of medical doctoral students: A social capital perspective," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    8. Heather Keathley-Herring & Eileen Van Aken & Fernando Gonzalez-Aleu & Fernando Deschamps & Geert Letens & Pablo Cardenas Orlandini, 2016. "Assessing the maturity of a research area: bibliometric review and proposed framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 927-951, November.
    9. Percia David, Dimitri & Maréchal, Loïc & Lacube, William & Gillard, Sébastien & Tsesmelis, Michael & Maillart, Thomas & Mermoud, Alain, 2023. "Measuring security development in information technologies: A scientometric framework using arXiv e-prints," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    10. Weiss, Matthias & Nair, Lakshmi B. & Hoorani, Bareerah H. & Gibbert, Michael & Hoegl, Martin, 2023. "Transparency of reporting practices in quantitative field studies: The transparency sweet spot for article citations," Journal of Informetrics, Elsevier, vol. 17(2).
    11. Hui Li & Yaohua Hu, 2024. "Metapath and attribute-based academic collaborator recommendation in heterogeneous academic networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4295-4315, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05012-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.