IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i7d10.1007_s11192-024-05043-x.html
   My bibliography  Save this article

Metapath and attribute-based academic collaborator recommendation in heterogeneous academic networks

Author

Listed:
  • Hui Li

    (Xidian University)

  • Yaohua Hu

    (Xidian University)

Abstract

Academic collaboration is fundamental to the advancement of scientific research. However, with the growing number of publications and researchers, it becomes increasingly challenging to identify suitable collaborators. Academic collaborator recommendation is a promising solution to this problem. Traditional recommendation methods based on collaborative filtering suffer serious data sparsity. In recent years, network topology-based methods have shown good recommendation performance while alleviating the data sparsity issue to some extent by exploiting the relationships between nodes and their attributes. Nevertheless, these methods are typically based on homogeneous collaboration networks that consist only of scholar nodes and collaboration relationships, leading to suboptimal performance. In reality, collaboration involves many different types of nodes and relations that accumulate multiplex information. To address this issue, we construct a heterogeneous academic information network comprising four types of nodes: scholars, papers, organizations, and publication venues. An academic collaborator recommendation model is designed to capture multi-type attribute features and network topology features of nodes through metapaths based on the network. Specifically, the attribute features of nodes are embedded by a node type-aware embedding method. The topology features are then extracted through the node type-aware aggregation and metapath instance aggregation procedure. After that, we utilize a metapath aggregation method to gather different types of metapaths, each representing a factor that affects collaboration. Thus, the topology information and attribute information are preserved, while encompassing multi-type factors of collaboration. Finally, we compute the vector similarity to determine collaborators. Through rigorous experimentation on a large-scale interdisciplinary academic dataset, we found that the proposed model exhibits outstanding performance in practical applications. Unlike traditional approaches confined to homogeneous collaboration networks, our model delves deeper by mining and leveraging diverse node attributes and multiple collaboration influencing factors. This approach significantly enhances the accuracy and effectiveness of collaborator recommendations. Ultimately, we aspire to contribute to a more efficient and accessible platform that simplifies the search for suitable collaborators.

Suggested Citation

  • Hui Li & Yaohua Hu, 2024. "Metapath and attribute-based academic collaborator recommendation in heterogeneous academic networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4295-4315, July.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05043-x
    DOI: 10.1007/s11192-024-05043-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05043-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05043-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaowen Xi & Jiaqi Wei & Ying Guo & Weiyu Duan, 2022. "Academic collaborations: a recommender framework spanning research interests and network topology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6787-6808, November.
    2. Chaocheng He & Jiang Wu & Qingpeng Zhang, 2022. "Proximity‐aware research leadership recommendation in research collaboration via deep neural networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 70-89, January.
    3. Wei Wang & Shuo Yu & Teshome Megersa Bekele & Xiangjie Kong & Feng Xia, 2017. "Scientific collaboration patterns vary with scholars’ academic ages," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 329-343, July.
    4. Jevin D West & Jennifer Jacquet & Molly M King & Shelley J Correll & Carl T Bergstrom, 2013. "The Role of Gender in Scholarly Authorship," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-6, July.
    5. Lutz Bornmann & Loet Leydesdorff, 2015. "Topical connections between the institutions within an organisation (institutional co-authorships, direct citation links and co-citations)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 455-463, January.
    6. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Di Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    7. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    8. Chen Yang & Tingting Liu & Xiaohong Chen & Yiyang Bian & Yuewen Liu, 2020. "HNRWalker: recommending academic collaborators with dynamic transition probabilities in heterogeneous networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 429-449, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
    2. Mehdi Rhaiem & Nabil Amara, 2020. "Determinants of research efficiency in Canadian business schools: evidence from scholar-level data," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 53-99, October.
    3. Xiaowen Xi & Jiaqi Wei & Ying Guo & Weiyu Duan, 2022. "Academic collaborations: a recommender framework spanning research interests and network topology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6787-6808, November.
    4. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    5. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    6. Sasaki, Hajime & Sakata, Ichiro, 2021. "Identifying potential technological spin-offs using hierarchical information in international patent classification," Technovation, Elsevier, vol. 100(C).
    7. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    8. Yu-Wei Chang, 2019. "Are articles in library and information science (LIS) journals primarily contributed to by LIS authors?," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 81-104, October.
    9. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2017. "Specialization versus diversification in research activities: the extent, intensity and relatedness of field diversification by individual scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1403-1418, September.
    10. Hamid R. Jamali & Ghasem Azadi-Ahmadabadi & Saeid Asadi, 2018. "Interdisciplinary relations of converging technologies: Nano–Bio–Info–Cogno (NBIC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1055-1073, August.
    11. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    12. Bart Thijs, 2020. "Using neural-network based paragraph embeddings for the calculation of within and between document similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 835-849, November.
    13. Pertti Vakkari & Yu‐Wei Chang & Kalervo Järvelin, 2022. "Disciplinary contributions to research topics and methodology in Library and Information Science—Leading to fragmentation?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(12), pages 1706-1722, December.
    14. Lin Zhang & Beibei Sun & Zaida Chinchilla-Rodríguez & Lixin Chen & Ying Huang, 2018. "Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 271-291, October.
    15. Tracy Klarenbeek & Nelius Boshoff, 2018. "Measuring multidisciplinary health research at South African universities: a comparative analysis based on co-authorships and journal subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1461-1485, September.
    16. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    17. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Murgia, Gianluca, 2013. "The collaboration behaviors of scientists in Italy: A field level analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 442-454.
    18. Bei Zeng & Haihua Lyu & Zhenyue Zhao & Jiang Li, 2021. "Exploring the direction and diversity of interdisciplinary knowledge diffusion: A case study of professor Zeyuan Liu's scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6253-6272, July.
    19. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    20. Amar Dhand & Douglas A Luke & Bobbi J Carothers & Bradley A Evanoff, 2016. "Academic Cross-Pollination: The Role of Disciplinary Affiliation in Research Collaboration," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05043-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.