IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v128y2023i2d10.1007_s11192-022-04574-5.html
   My bibliography  Save this article

YouTube and science: models for research impact

Author

Listed:
  • Abdul Rahman Shaikh

    (Northern Illinois University)

  • Hamed Alhoori

    (Northern Illinois University)

  • Maoyuan Sun

    (Northern Illinois University)

Abstract

Video communication has been rapidly increasing over the past decade, with YouTube providing a medium where users can post, discover, share, and react to videos. There has also been an increase in the number of videos citing research articles, especially since it has become relatively commonplace for academic conferences to require video submissions. However, the relationship between research articles and YouTube videos is not clear, and the purpose of the present paper is to address this issue. We created new datasets using YouTube videos and mentions of research articles on various online platforms. We found that most of the articles cited in the videos are related to medicine and biochemistry. We analyzed these datasets through statistical techniques and visualization, and built machine learning models to predict (1) whether a research article is cited in videos, (2) whether a research article cited in a video achieves a level of popularity, and (3) whether a video citing a research article becomes popular. The best models achieved F1 scores between 80% and 94%. According to our results, research articles mentioned in more tweets and news coverage have a higher chance of receiving video citations. We also found that video views are important for predicting citations and increasing research articles’ popularity and public engagement with science.

Suggested Citation

  • Abdul Rahman Shaikh & Hamed Alhoori & Maoyuan Sun, 2023. "YouTube and science: models for research impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 933-955, February.
  • Handle: RePEc:spr:scient:v:128:y:2023:i:2:d:10.1007_s11192-022-04574-5
    DOI: 10.1007/s11192-022-04574-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04574-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04574-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    2. Thelwall, Mike & Nevill, Tamara, 2018. "Could scientists use Altmetric.com scores to predict longer term citation counts?," Journal of Informetrics, Elsevier, vol. 12(1), pages 237-248.
    3. Cassidy R. Sugimoto & Sam Work & Vincent Larivière & Stefanie Haustein, 2017. "Scholarly use of social media and altmetrics: A review of the literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(9), pages 2037-2062, September.
    4. Pardeep Sud & Mike Thelwall, 2014. "Evaluating altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1131-1143, February.
    5. Martin Thomas Falk & Eva Hagsten, 2021. "When international academic conferences go virtual," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 707-724, January.
    6. Anjana Susarla & Jeong-Ha Oh & Yong Tan, 2012. "Social Networks and the Diffusion of User-Generated Content: Evidence from YouTube," Information Systems Research, INFORMS, vol. 23(1), pages 23-41, March.
    7. Abdul Rahman Shaikh & Hamed Alhoori, 2019. "Predicting Patent Citations to measure Economic Impact of Scholarly Research," Papers 1906.08244, arXiv.org.
    8. Bradley M. Hemminger & Julia TerMaat, 2014. "Annotating for the world: Attitudes toward sharing scholarly annotations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(11), pages 2278-2292, November.
    9. Robert Hovden, 2013. "Bibliometrics for Internet media: Applying the h-index to YouTube," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(11), pages 2326-2331, November.
    10. Kayvan Kousha & Mike Thelwall & Matthew Bickley, 2022. "The high scholarly value of grey literature before and during Covid-19," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3489-3504, June.
    11. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    12. Bornmann, Lutz, 2014. "Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics," Journal of Informetrics, Elsevier, vol. 8(4), pages 895-903.
    13. Katrin Weller, 2015. "Social Media and Altmetrics: An Overview of Current Alternative Approaches to Measuring Scholarly Impact," Springer Books, in: Isabell M. Welpe & Jutta Wollersheim & Stefanie Ringelhan & Margit Osterloh (ed.), Incentives and Performance, edition 127, pages 261-276, Springer.
    14. Shahzad, Murtuza & Alhoori, Hamed & Freedman, Reva & Rahman, Shaikh Abdul, 2022. "Quantifying the online long-term interest in research," Journal of Informetrics, Elsevier, vol. 16(2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahzad, Murtuza & Alhoori, Hamed & Freedman, Reva & Rahman, Shaikh Abdul, 2022. "Quantifying the online long-term interest in research," Journal of Informetrics, Elsevier, vol. 16(2).
    2. Sergio Copiello, 2020. "Other than detecting impact in advance, alternative metrics could act as early warning signs of retractions: tentative findings of a study into the papers retracted by PLoS ONE," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2449-2469, December.
    3. Maryam Moshtagh & Tahereh Jowkar & Maryam Yaghtin & Hajar Sotudeh, 2023. "The moderating effect of altmetrics on the correlations between single and multi-faceted university ranking systems: the case of THE and QS vs. Nature Index and Leiden," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 761-781, January.
    4. Mike Thelwall & Kayvan Kousha & Mahshid Abdoli & Emma Stuart & Meiko Makita & Paul Wilson & Jonathan Levitt, 2023. "Do altmetric scores reflect article quality? Evidence from the UK Research Excellence Framework 2021," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 582-593, May.
    5. González-Betancor, Sara M. & Dorta-González, Pablo, 2023. "Does society show differential attention to researchers based on gender and field?," Journal of Informetrics, Elsevier, vol. 17(4).
    6. Yang, Siluo & Zheng, Mengxue & Yu, Yonghao & Wolfram, Dietmar, 2021. "Are Altmetric.com scores effective for research impact evaluation in the social sciences and humanities?," Journal of Informetrics, Elsevier, vol. 15(1).
    7. Ying Guo & Xiantao Xiao, 2022. "Author-level altmetrics for the evaluation of Chinese scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 973-990, February.
    8. Chieh Liu & Mu-Hsuan Huang, 2022. "Exploring the relationships between altmetric counts and citations of papers in different academic fields based on co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4939-4958, August.
    9. Martín-Martín, Alberto & Orduna-Malea, Enrique & Delgado López-Cózar, Emilio, 2018. "Author-level metrics in the new academic profile platforms: The online behaviour of the Bibliometrics community," Journal of Informetrics, Elsevier, vol. 12(2), pages 494-509.
    10. Cristina López-Duarte & Marta M. Vidal-Suárez & Belén González-Díaz, 2019. "Cross-national distance and international business: an analysis of the most influential recent models," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 173-208, October.
    11. Jianhua Hou & Jiantao Ye, 2020. "Are uncited papers necessarily all nonimpact papers? A quantitative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1631-1662, August.
    12. Saeed-Ul Hassan & Timothy D. Bowman & Mudassir Shabbir & Aqsa Akhtar & Mubashir Imran & Naif Radi Aljohani, 2019. "Influential tweeters in relation to highly cited articles in altmetric big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 481-493, April.
    13. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    14. Jianhua Hou & Bili Zheng & Yang Zhang & Chaomei Chen, 2021. "How do Price medalists’ scholarly impact change before and after their awards?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5945-5981, July.
    15. Rongying Zhao & Xu Wang, 2019. "Evaluation and comparison of influence in international Open Access journals between China and USA," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1091-1110, September.
    16. Tan Jin & Huiqiong Duan & Xiaofei Lu & Jing Ni & Kai Guo, 2021. "Do research articles with more readable abstracts receive higher online attention? Evidence from Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8471-8490, October.
    17. Jianhua Hou & Da Ma, 2020. "How the high-impact papers formed? A study using data from social media and citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2597-2615, December.
    18. Lutz Bornmann & Rüdiger Mutz & Robin Haunschild & Felix Moya-Anegon & Mirko Almeida Madeira Clemente & Moritz Stefaner, 2021. "Mapping the impact of papers on various status groups in excellencemapping.net: a new release of the excellence mapping tool based on citation and reader scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9305-9331, November.
    19. Ni Cheng & Ke Dong, 2018. "Knowledge communication on social media: a case study of Biomedical Science on Baidu Baike," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1749-1770, September.
    20. Xi Zhang & Xianhai Wang & Hongke Zhao & Patricia Ordóñez de Pablos & Yongqiang Sun & Hui Xiong, 2019. "An effectiveness analysis of altmetrics indices for different levels of artificial intelligence publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1311-1344, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:128:y:2023:i:2:d:10.1007_s11192-022-04574-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.