IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v119y2019i1d10.1007_s11192-019-03044-9.html
   My bibliography  Save this article

Influential tweeters in relation to highly cited articles in altmetric big data

Author

Listed:
  • Saeed-Ul Hassan

    (Information Technology University)

  • Timothy D. Bowman

    (Wayne State University)

  • Mudassir Shabbir

    (Information Technology University)

  • Aqsa Akhtar

    (Information Technology University)

  • Mubashir Imran

    (Information Technology University)

  • Naif Radi Aljohani

    (King Abdulaziz University)

Abstract

The relationship between influential tweeters and highly cited articles in the field of information sciences was analysed using Twitter data gathered by Altmetric.com from July 2011 through February 2017. The dataset consists of more than 10,000 tweets, and these mentions, retweets and followers were used to generate a connected, undirected graph. This graph reveals the most influential tweeters by identifying the largest drop in the eigenvalue of adjacency or affinity matrix of a graph when certain nodes are removed; those which, when deleted, cause the greatest drop in the eigenvalue of the graph are considered to be the most influential. The machine-learning model applied in this work utilizes a feature vector containing the accumulated sum of the rank scores of those influential users who tweet a given article, along with known altmetric features such as the user type and post counts for various social media. Finally, the supervised-learning model was trained using Random Forest and Support Vector Machine classifiers with 11 features, including the sum of the ranks of influential users who tweet a given article in our dataset. The results were analysed using Receiver Operating Characteristic (ROC) curves and Precision Recall (PR) curves, which give the commendable outcomes compared to the baseline model. We found that, for the classification of highly cited articles, Twitter users’ score for influence is the most important feature. Finally, we show that our model—which was trained by taking the score for influence into consideration—outperforms the baseline, at 79% for ROC and 90% for PR with the Random Forest Model, effectively identifying the highly cited articles.

Suggested Citation

  • Saeed-Ul Hassan & Timothy D. Bowman & Mudassir Shabbir & Aqsa Akhtar & Mubashir Imran & Naif Radi Aljohani, 2019. "Influential tweeters in relation to highly cited articles in altmetric big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 481-493, April.
  • Handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03044-9
    DOI: 10.1007/s11192-019-03044-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03044-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03044-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutz Bornmann & Robin Haunschild, 2016. "How to normalize Twitter counts? A first attempt based on journals in the Twitter Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1405-1422, June.
    2. Lutz Bornmann, 2016. "What do altmetrics counts mean? A plea for content analyses," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(4), pages 1016-1017, April.
    3. Fahd Kalloubi & El Habib Nfaoui & Omar El Beqqali, 2017. "Harnessing Semantic Features for Large-Scale Content-Based Hashtag Recommendations on Microblogging Platforms," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 13(1), pages 63-81, January.
    4. Nicholas Beauchamp, 2017. "Predicting and Interpolating State‐Level Polls Using Twitter Textual Data," American Journal of Political Science, John Wiley & Sons, vol. 61(2), pages 490-503, April.
    5. Cassidy R. Sugimoto & Sam Work & Vincent Larivière & Stefanie Haustein, 2017. "Scholarly use of social media and altmetrics: A review of the literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(9), pages 2037-2062, September.
    6. Pardeep Sud & Mike Thelwall, 2014. "Evaluating altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1131-1143, February.
    7. Zohreh Zahedi & Rodrigo Costas & Paul Wouters, 2014. "How well developed are altmetrics? A cross-disciplinary analysis of the presence of ‘alternative metrics’ in scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1491-1513, November.
    8. Saeed-Ul Hassan & Mubashir Imran & Uzair Gillani & Naif Radi Aljohani & Timothy D. Bowman & Fereshteh Didegah, 2017. "Measuring social media activity of scientific literature: an exhaustive comparison of scopus and novel altmetrics big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 1037-1057, November.
    9. Stefanie Haustein & Isabella Peters & Cassidy R. Sugimoto & Mike Thelwall & Vincent Larivière, 2014. "Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 656-669, April.
    10. Rodrigo Costas & Zohreh Zahedi & Paul Wouters, 2015. "Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(10), pages 2003-2019, October.
    11. Muhammad Aslam Jarwar & Rabeeh Ayaz Abbasi & Mubashar Mushtaq & Onaiza Maqbool & Naif R. Aljohani & Ali Daud & Jalal S. Alowibdi & J.R. Cano & S. García & Ilyoung Chong, 2017. "CommuniMents: A Framework for Detecting Community Based Sentiments for Events," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 13(2), pages 87-108, April.
    12. Bornmann, Lutz, 2014. "Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics," Journal of Informetrics, Elsevier, vol. 8(4), pages 895-903.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhichao Fang & Rodrigo Costas & Paul Wouters, 2022. "User engagement with scholarly tweets of scientific papers: a large-scale and cross-disciplinary analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4523-4546, August.
    2. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    3. Yaxue Ma & Zhichao Ba & Yuxiang Zhao & Jin Mao & Gang Li, 2021. "Understanding and predicting the dissemination of scientific papers on social media: a two-step simultaneous equation modeling–artificial neural network approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7051-7085, August.
    4. Dorte Drongstrup & Shafaq Malik & Naif Radi Aljohani & Salem Alelyani & Iqra Safder & Saeed-Ul Hassan, 2020. "Can social media usage of scientific literature predict journal indices of AJG, SNIP and JCR? An altmetric study of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1541-1558, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liwei Zhang & Jue Wang, 2021. "What affects publications’ popularity on Twitter?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9185-9198, November.
    2. Yaxue Ma & Zhichao Ba & Yuxiang Zhao & Jin Mao & Gang Li, 2021. "Understanding and predicting the dissemination of scientific papers on social media: a two-step simultaneous equation modeling–artificial neural network approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7051-7085, August.
    3. Yu Liu & Dan Lin & Xiujuan Xu & Shimin Shan & Quan Z. Sheng, 2018. "Multi-views on Nature Index of Chinese academic institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 823-837, March.
    4. Liwei Zhang & Jue Wang, 2018. "Why highly cited articles are not highly tweeted? A biology case," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 495-509, October.
    5. Tan Jin & Huiqiong Duan & Xiaofei Lu & Jing Ni & Kai Guo, 2021. "Do research articles with more readable abstracts receive higher online attention? Evidence from Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8471-8490, October.
    6. Xi Zhang & Xianhai Wang & Hongke Zhao & Patricia Ordóñez de Pablos & Yongqiang Sun & Hui Xiong, 2019. "An effectiveness analysis of altmetrics indices for different levels of artificial intelligence publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1311-1344, June.
    7. Sergio Copiello, 2020. "Other than detecting impact in advance, alternative metrics could act as early warning signs of retractions: tentative findings of a study into the papers retracted by PLoS ONE," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2449-2469, December.
    8. Ying Guo & Xiantao Xiao, 2022. "Author-level altmetrics for the evaluation of Chinese scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 973-990, February.
    9. Isidro F. Aguillo, 2020. "Altmetrics of the Open Access Institutional Repositories: a webometrics approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1181-1192, June.
    10. Chieh Liu & Mu-Hsuan Huang, 2022. "Exploring the relationships between altmetric counts and citations of papers in different academic fields based on co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4939-4958, August.
    11. Martín-Martín, Alberto & Orduna-Malea, Enrique & Delgado López-Cózar, Emilio, 2018. "Author-level metrics in the new academic profile platforms: The online behaviour of the Bibliometrics community," Journal of Informetrics, Elsevier, vol. 12(2), pages 494-509.
    12. Wang, Yajie & Hou, Haiyan & Hu, Zhigang, 2021. "‘To tweet or not to tweet?’ A study of the use of Twitter by scholarly book publishers in Social Sciences and Humanities," Journal of Informetrics, Elsevier, vol. 15(3).
    13. Ortega, José Luis, 2020. "Proposal of composed altmetric indicators based on prevalence and impact dimensions," Journal of Informetrics, Elsevier, vol. 14(4).
    14. Maryam Moshtagh & Tahereh Jowkar & Maryam Yaghtin & Hajar Sotudeh, 2023. "The moderating effect of altmetrics on the correlations between single and multi-faceted university ranking systems: the case of THE and QS vs. Nature Index and Leiden," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 761-781, January.
    15. Jianhua Hou & Jiantao Ye, 2020. "Are uncited papers necessarily all nonimpact papers? A quantitative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1631-1662, August.
    16. Saeed-Ul Hassan & Mubashir Imran & Uzair Gillani & Naif Radi Aljohani & Timothy D. Bowman & Fereshteh Didegah, 2017. "Measuring social media activity of scientific literature: an exhaustive comparison of scopus and novel altmetrics big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 1037-1057, November.
    17. Tahamtan, Iman & Bornmann, Lutz, 2018. "Creativity in science and the link to cited references: Is the creative potential of papers reflected in their cited references?," Journal of Informetrics, Elsevier, vol. 12(3), pages 906-930.
    18. Zhiqi Wang & Wolfgang Glänzel & Yue Chen, 2020. "The impact of preprints in Library and Information Science: an analysis of citations, usage and social attention indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1403-1423, November.
    19. Zhichao Fang & Rodrigo Costas & Wencan Tian & Xianwen Wang & Paul Wouters, 2020. "An extensive analysis of the presence of altmetric data for Web of Science publications across subject fields and research topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2519-2549, September.
    20. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03044-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.