IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i3d10.1007_s11192-021-03863-9.html
   My bibliography  Save this article

Discovering communities based on mention distance

Author

Listed:
  • Li Zhang

    (Beijing Information Science and Technology University)

  • Ming Liu

    (National Computer Network Emergency Response Technical Team/Coordination Center of China
    Beihang University)

  • Bo Wang

    (National Computer Network Emergency Response Technical Team/Coordination Center of China)

  • Bo Lang

    (Beihang University)

  • Peng Yang

    (National Computer Network Emergency Response Technical Team/Coordination Center of China)

Abstract

Scholarly community detection has important applications in various fields. Current studies rely heavily on structured scholar networks, which have high computational complexity and are challenging to construct in practice. We propose a novel approach that can detect disjoint and overlapping scholarly communities directly from large textual corpora. To the best of our knowledge, this is the first study intended to detect communities directly from unstructured texts. In general, academic articles tend to mention related work and researchers. Researchers that are more closely related to each other are mentioned in a closer grouping in lines of academic text. Based on this correlation, we propose an intuitional method that measures the mutual relatedness of researchers through their textual distance. First, we extract and disambiguate the researcher names from academic articles. Then, we embed each researcher as an implicit vector and measure the relatedness of researchers by their vector distance. Finally, the communities are identified by vector clusters. We develop and evaluate our method on several real-world datasets. The experimental results demonstrate that our method achieves comparable performance with several state-of-the-art methods.

Suggested Citation

  • Li Zhang & Ming Liu & Bo Wang & Bo Lang & Peng Yang, 2021. "Discovering communities based on mention distance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1945-1967, March.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:3:d:10.1007_s11192-021-03863-9
    DOI: 10.1007/s11192-021-03863-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03863-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03863-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pancheng Wang & Shasha Li & Haifang Zhou & Jintao Tang & Ting Wang, 2019. "Cited text spans identification with an improved balanced ensemble model," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1111-1145, September.
    2. Ludo Waltman & Nees Eck, 2013. "A smart local moving algorithm for large-scale modularity-based community detection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(11), pages 1-14, November.
    3. Xiaozhong Liu & Jinsong Zhang & Chun Guo, 2013. "Full‐text citation analysis: A new method to enhance scholarly networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(9), pages 1852-1863, September.
    4. He, Chaobo & Tang, Yong & Liu, Hai & Fei, Xiang & Li, Hanchao & Liu, Shuangyin, 2019. "A robust multi-view clustering method for community detection combining link and content information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 396-411.
    5. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co‐citation clustering using full text," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    6. Lutz Bornmann & K. Brad Wray & Robin Haunschild, 2020. "Citation concept analysis (CCA): a new form of citation analysis revealing the usefulness of concepts for other researchers illustrated by exemplary case studies including classic books by Thomas S. K," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1051-1074, February.
    7. Xiaozhong Liu & Jinsong Zhang & Chun Guo, 2013. "Full-text citation analysis: A new method to enhance scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1852-1863, September.
    8. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co-citation clustering using full text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    9. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    10. Lutz Bornmann & K. Brad Wray & Robin Haunschild, 2020. "Correction to: Citation concept analysis (CCA): a new form of citation analysis revealing the usefulness of concepts for other researchers illustrated by exemplary case studies including classic books," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2737-2737, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    2. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    3. Jensen, Scott & Liu, Xiaozhong & Yu, Yingying & Milojevic, Staša, 2016. "Generation of topic evolution trees from heterogeneous bibliographic networks," Journal of Informetrics, Elsevier, vol. 10(2), pages 606-621.
    4. Luis Quevedo & Víctor Velasco & José à lvarez & Paula Moreno, 2023. "Mapping Tourism and Global Change: A Bibliometric Analysis (2012-2022)," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 12, March.
    5. K. Brad Wray, 2020. "Paradigms in Structure: finally, a count," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 823-828, October.
    6. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    7. Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2021. "An in-text citation classification predictive model for a scholarly search system," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5509-5529, July.
    8. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    9. Lucia Saraswati & Tuty Anggraini & Fauzan Azima, 2023. "A Bibliometric Analysis of Trends in Food Safety Research: The Case of Chili Sauce," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(9), pages 27-32, September.
    10. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    11. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    12. Mengyu Yu & Mazie Krehbiel & Samantha Thompson & Tatjana Miljkovic, 2020. "An exploration of gender gap using advanced data science tools: actuarial research community," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 767-789, May.
    13. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    14. Jodi Schneider & Di Ye & Alison M. Hill & Ashley S. Whitehorn, 2020. "Continued post-retraction citation of a fraudulent clinical trial report, 11 years after it was retracted for falsifying data," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2877-2913, December.
    15. Hindah Mustika & Anis Eliyana & Tri Siwi Agustina & Aisha Anwar, 2022. "Testing the Determining Factors of Knowledge Sharing Behavior," SAGE Open, , vol. 12(1), pages 21582440221, February.
    16. Ivan Heibi & Silvio Peroni, 2021. "A qualitative and quantitative analysis of open citations to retracted articles: the Wakefield 1998 et al.'s case," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8433-8470, October.
    17. Riaz Ahmad & Muhammad Tanvir Afzal, 2018. "CAD: an algorithm for citation-anchors detection in research papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1405-1423, December.
    18. Kamal Sanguri & Atanu Bhuyan & Sabyasachi Patra, 2020. "A semantic similarity adjusted document co-citation analysis: a case of tourism supply chain," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 233-269, October.
    19. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    20. Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:3:d:10.1007_s11192-021-03863-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.