IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v64y2013i9p1759-1767.html
   My bibliography  Save this article

Improving the accuracy of co‐citation clustering using full text

Author

Listed:
  • Kevin W. Boyack
  • Henry Small
  • Richard Klavans

Abstract

Historically, co‐citation models have been based only on bibliographic information. Full‐text analysis offers the opportunity to significantly improve the quality of the signals upon which these co‐citation models are based. In this work we study the effect of reference proximity on the accuracy of co‐citation clusters. Using a corpus of 270,521 full text documents from 2007, we compare the results of traditional co‐citation clustering using only the bibliographic information to results from co‐citation clustering where proximity between reference pairs is factored into the pairwise relationships. We find that accounting for reference proximity from full text can increase the textual coherence (a measure of accuracy) of a co‐citation cluster solution by up to 30% over the traditional approach based on bibliographic information.

Suggested Citation

  • Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co‐citation clustering using full text," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
  • Handle: RePEc:bla:jamist:v:64:y:2013:i:9:p:1759-1767
    DOI: 10.1002/asi.22896
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.22896
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.22896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raja Habib & Muhammad Tanvir Afzal, 2019. "Sections-based bibliographic coupling for research paper recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 643-656, May.
    2. Kamal Sanguri & Atanu Bhuyan & Sabyasachi Patra, 2020. "A semantic similarity adjusted document co-citation analysis: a case of tourism supply chain," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 233-269, October.
    3. Mengyu Yu & Mazie Krehbiel & Samantha Thompson & Tatjana Miljkovic, 2020. "An exploration of gender gap using advanced data science tools: actuarial research community," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 767-789, May.
    4. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    5. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    6. Svitlana Petrasova & Nina Khairova & Włodzimierz Lewoniewski & Orken Mamyrbayev & Kuralay Mukhsina, 2018. "Similar Text Fragments Extraction for Identifying Common Wikipedia Communities," Data, MDPI, vol. 3(4), pages 1-9, December.
    7. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    8. Li Zhang & Ming Liu & Bo Wang & Bo Lang & Peng Yang, 2021. "Discovering communities based on mention distance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1945-1967, March.
    9. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    10. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    11. Riaz Ahmad & Muhammad Tanvir Afzal, 2018. "CAD: an algorithm for citation-anchors detection in research papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1405-1423, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:64:y:2013:i:9:p:1759-1767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.