IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v119y2019i2d10.1007_s11192-019-03053-8.html
   My bibliography  Save this article

Sections-based bibliographic coupling for research paper recommendation

Author

Listed:
  • Raja Habib

    (Capital University of Science and Technology)

  • Muhammad Tanvir Afzal

    (Capital University of Science and Technology)

Abstract

Digital libraries suffer from the problem of information overload due to immense proliferation of research papers in journals and conference papers. This makes it challenging for researchers to access the relevant research papers. Fortunately, research paper recommendation systems offer a solution to this dilemma by filtering all the available information and delivering what is most relevant to the user. Researchers have proposed numerous approaches for research paper recommendation which are based on metadata, content, citation analysis, collaborative filtering, etc. Approaches based on citation analysis, including co-citation and bibliographic coupling, have proven to be significant. Researchers have extended the co-citation approach to include content analysis and citation proximity analysis and this has led to improvement in the accuracy of recommendations. However, in co-citation analysis, similarity between papers is discovered based on the frequency of co-cited papers in different research papers that can belong to different areas. Bibliographic coupling, on the other hand, determines the relevance between two papers based on their common references. Therefore, bibliographic coupling has inherited the benefits of recommending relevant papers; however, traditional bibliographic coupling does not consider the citing patterns of common references in different logical sections of the citing papers. Since the use of citation proximity analysis in co-citation has improved the accuracy of paper recommendation, this paper proposes a paper recommendation approach that extends the traditional bibliographic coupling by exploiting the distribution of citations in logical sections in bibliographically coupled papers. Comprehensive automated evaluation utilizing Jensen Shannon Divergence was conducted to evaluate the proposed approach. The results showed significant improvement over traditional bibliographic coupling and content-based research paper recommendation.

Suggested Citation

  • Raja Habib & Muhammad Tanvir Afzal, 2019. "Sections-based bibliographic coupling for research paper recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 643-656, May.
  • Handle: RePEc:spr:scient:v:119:y:2019:i:2:d:10.1007_s11192-019-03053-8
    DOI: 10.1007/s11192-019-03053-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03053-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03053-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Ying & Liu, Xiaozhong & Guo, Chun & Cronin, Blaise, 2013. "The distribution of references across texts: Some implications for citation analysis," Journal of Informetrics, Elsevier, vol. 7(3), pages 583-592.
    2. Shengbo Liu & Chaomei Chen, 2012. "The proximity of co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 495-511, May.
    3. Hauke Jan & Kossowski Tomasz, 2011. "Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data," Quaestiones Geographicae, Sciendo, vol. 30(2), pages 87-93, June.
    4. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    5. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co‐citation clustering using full text," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    6. Shengbo Liu & Chaomei Chen, 2013. "The differences between latent topics in abstracts and citation contexts of citing papers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(3), pages 627-639, March.
    7. Boyack, Kevin W. & van Eck, Nees Jan & Colavizza, Giovanni & Waltman, Ludo, 2018. "Characterizing in-text citations in scientific articles: A large-scale analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 59-73.
    8. Siniša Maričić & Jagoda Spaventi & Leo Pavičić & Greta Pifat‐Mrzljak, 1998. "Citation context versus the frequency counts of citation histories," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(6), pages 530-540.
    9. Alison Callahan & Stephen Hockema & Gunther Eysenbach, 2010. "Contextual cocitation: Augmenting cocitation analysis and its applications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(6), pages 1130-1143, June.
    10. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    11. Shengbo Liu & Chaomei Chen, 2013. "The differences between latent topics in abstracts and citation contexts of citing papers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(3), pages 627-639, March.
    12. Ying Ding & Guo Zhang & Tamy Chambers & Min Song & Xiaolong Wang & Chengxiang Zhai, 2014. "Content-based citation analysis: The next generation of citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(9), pages 1820-1833, September.
    13. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co-citation clustering using full text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    14. Aaron Elkiss & Siwei Shen & Anthony Fader & Güneş Erkan & David States & Dragomir Radev, 2008. "Blind men and elephants: What do citation summaries tell us about a research article?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(1), pages 51-62, January.
    15. Alison Callahan & Stephen Hockema & Gunther Eysenbach, 2010. "Contextual cocitation: Augmenting cocitation analysis and its applications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(6), pages 1130-1143, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osmud Rahman & Dingtao Hu & Benjamin C. M. Fung, 2023. "A Systematic Literature Review of Fashion, Sustainability, and Consumption Using a Mixed Methods Approach," Sustainability, MDPI, vol. 15(16), pages 1-37, August.
    2. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    3. Bowen Ma & Chengzhi Zhang & Yuzhuo Wang & Sanhong Deng, 2022. "Enhancing identification of structure function of academic articles using contextual information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 885-925, February.
    4. Saeed-Ul Hassan & Naif R. Aljohani & Mudassir Shabbir & Umair Ali & Sehrish Iqbal & Raheem Sarwar & Eugenio Martínez-Cámara & Sebastián Ventura & Francisco Herrera, 2020. "Tweet Coupling: a social media methodology for clustering scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 973-991, August.
    5. Elisabete Nogueira & Sofia Gomes & João M. Lopes, 2022. "The Key to Sustainable Economic Development: A Triple Bottom Line Approach," Resources, MDPI, vol. 11(5), pages 1-18, May.
    6. Casprini, Elena & Dabic, Marina & Kotlar, Josip & Pucci, Tommaso, 2020. "A bibliometric analysis of family firm internationalization research: Current themes, theoretical roots, and ways forward," International Business Review, Elsevier, vol. 29(5).
    7. Mansi Singh & Sanjay Dhir & Harsh Mishra, 2024. "Synthesizing research in entrepreneurial bootstrapping and bricolage: a bibliometric mapping and TCCM analysis," Management Review Quarterly, Springer, vol. 74(1), pages 487-520, February.
    8. Hei-Chia Wang & Jen-Wei Cheng & Che-Tsung Yang, 2022. "SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2521-2546, May.
    9. Juliana R. Baltazar & Cristina I. Fernandes & Veland Ramadani & Mathew Hughes, 2023. "Family business succession and innovation: a systematic literature review," Review of Managerial Science, Springer, vol. 17(8), pages 2897-2920, November.
    10. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    11. Yi-Ying Wu & Wen-Huei Chou, 2023. "A Bibliometric Analysis to Identify Research Trends in Intervention Programs for Smartphone Addiction," IJERPH, MDPI, vol. 20(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    2. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    3. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    4. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    5. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    6. Bikun Chen & Dannan Deng & Zhouyan Zhong & Chengzhi Zhang, 2020. "Exploring linguistic characteristics of highly browsed and downloaded academic articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1769-1790, March.
    7. Marc Bertin & Iana Atanassova & Cassidy R. Sugimoto & Vincent Lariviere, 2016. "The linguistic patterns and rhetorical structure of citation context: an approach using n-grams," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1417-1434, December.
    8. Shengbo Liu & Chaomei Chen & Kun Ding & Bo Wang & Kan Xu & Yuan Lin, 2014. "Literature retrieval based on citation context," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1293-1307, November.
    9. Kamal Sanguri & Atanu Bhuyan & Sabyasachi Patra, 2020. "A semantic similarity adjusted document co-citation analysis: a case of tourism supply chain," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 233-269, October.
    10. Maryam Yaghtin & Hajar Sotudeh & Mahdieh Mirzabeigi & Seyed Mostafa Fakhrahmad & Mehdi Mohammadi, 2019. "In quest of new document relations: evaluating co-opinion relations between co-citations and its impact on Information retrieval effectiveness," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 987-1008, May.
    11. Masaki Eto, 2013. "Evaluations of context-based co-citation searching," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 651-673, February.
    12. Annarelli, Alessandro & Battistella, Cinzia & Nonino, Fabio & Parida, Vinit & Pessot, Elena, 2021. "Literature review on digitalization capabilities: Co-citation analysis of antecedents, conceptualization and consequences," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    13. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    14. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    15. Zhang, Chengzhi & Liu, Lifan & Wang, Yuzhuo, 2021. "Characterizing references from different disciplines: A perspective of citation content analysis," Journal of Informetrics, Elsevier, vol. 15(2).
    16. Shengbo Liu & Chaomei Chen, 2012. "The proximity of co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 495-511, May.
    17. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    18. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    19. Riaz Ahmad & Muhammad Tanvir Afzal, 2018. "CAD: an algorithm for citation-anchors detection in research papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1405-1423, December.
    20. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:119:y:2019:i:2:d:10.1007_s11192-019-03053-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.