IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i3d10.1007_s11192-020-03861-3.html
   My bibliography  Save this article

Multilingual author matching across different academic databases: a case study on KAKEN, DBLP, and PubMed

Author

Listed:
  • Yuto Chikazawa

    (Doshisha University)

  • Marie Katsurai

    (Doshisha University)

  • Ikki Ohmukai

    (The University of Tokyo)

Abstract

Researchers often use their native languages to present and exchange ideas. To construct an individual author’s complete profile, a list of their English and non-English academic publications must be constructed. This paper presents a practical approach for multilingual author matching across different academic databases. Our approach automatically links the academic records of a target database to a researcher identifier of a source database. First, we extracted a comprehensive set of records in the target database, whose author names were identical to the researcher names in the source database. Then, we calculated multiple author similarity measures, which can be adopted in certain entity pairs from different language databases. Finally, we aggregated the measures to output an improved score that indicates the likelihood of each record as being the researcher’s work. Our method was found to be easy to implement, and its performance was evaluated in real database management settings. Experiments were conducted using DBLP and PubMed as the target English databases. As the Japanese database, KAKEN was the source for identifying researcher information. The results demonstrated each similarity measure’s performance, from which we observed that the score aggregation achieved stable performance. Our method can lessen human efforts to associate various scholarly contributions.

Suggested Citation

  • Yuto Chikazawa & Marie Katsurai & Ikki Ohmukai, 2021. "Multilingual author matching across different academic databases: a case study on KAKEN, DBLP, and PubMed," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2311-2327, March.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:3:d:10.1007_s11192-020-03861-3
    DOI: 10.1007/s11192-020-03861-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03861-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03861-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    2. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic‐based hierarchical method for name disambiguation in bibliographic citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    3. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    2. Jinseok Kim, 2019. "A fast and integrative algorithm for clustering performance evaluation in author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 661-681, August.
    3. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    4. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    5. Ciriaco Andrea D’Angelo & Nees Jan Eck, 2020. "Collecting large-scale publication data at the level of individual researchers: a practical proposal for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 883-907, May.
    6. Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
    7. Humaira Waqas & Muhammad Abdul Qadir, 2021. "Multilayer heuristics based clustering framework (MHCF) for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7637-7678, September.
    8. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    9. Humaira Waqas & Abdul Qadir, 2022. "Completing features for author name disambiguation (AND): an empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 1039-1063, February.
    10. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    11. Li Zhang & Wei Lu & Jinqing Yang, 2023. "LAGOS‐AND: A large gold standard dataset for scholarly author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 168-185, February.
    12. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    13. Cristian Santini & Genet Asefa Gesese & Silvio Peroni & Aldo Gangemi & Harald Sack & Mehwish Alam, 2022. "A knowledge graph embeddings based approach for author name disambiguation using literals," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4887-4912, August.
    14. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    15. Katherine W. McCain, 2018. "Beyond Garfield’s Citation Index: an assessment of some issues in building a personal name Acknowledgments Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 605-631, February.
    16. Harlley Lima & Thiago H. P. Silva & Mirella M. Moro & Rodrygo L. T. Santos & Wagner Meira & Alberto H. F. Laender, 2015. "Assessing the profile of top Brazilian computer science researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 879-896, June.
    17. Helena Mihaljević & Lucía Santamaría, 2021. "Disambiguation of author entities in ADS using supervised learning and graph theory methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3893-3917, May.
    18. Dongwook Shin & Taehwan Kim & Joongmin Choi & Jungsun Kim, 2014. "Author name disambiguation using a graph model with node splitting and merging based on bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 15-50, July.
    19. Jian Wang & Kaspars Berzins & Diana Hicks & Julia Melkers & Fang Xiao & Diogo Pinheiro, 2012. "A boosted-trees method for name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 391-411, November.
    20. Abdelghani Maddi & Lesya Baudoin, 2022. "The quality of the web of science data: a longitudinal study on the completeness of authors-addresses links," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6279-6292, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:3:d:10.1007_s11192-020-03861-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.