IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i3d10.1007_s11192-020-03685-1.html
   My bibliography  Save this article

A methodology for developing scientific diversification strategy of countries

Author

Listed:
  • Elmira Janavi

    (National Research Institute for Science Policy (NRISP))

  • Mohammad Javad Mansourzadeh

    (Tehran University of Medical Sciences)

  • Mojgan Samandar Ali Eshtehardi

    (National Research Institute for Science Policy (NRISP))

Abstract

Identifying the strengths and weaknesses of the scientific system is a concern of scientific policymakers in each country. This research aimed to present a methodology to detect the strong and weak points of science in various countries by adopting the method of economic complexity. Subsequently, the formulation mode of scientific diversification strategies of different countries is introduced using the complexity approach. In this method, first the scientific diversity of each country and the ubiquity of scientific domains are calculated, and the fitness of the countries and the scientific complexity of the domains are accordingly estimated. Subsequently, the scientific domains creating the highest level of complexity, the least distance from the country and the most opportunity gain for that country are introduced as scientific productivity and strategy border of the country to diversify the scientific system of the country. Moreover, the strengths and weaknesses as well as diversification strategies of the Iranian scientific system have been presented as a case study. The findings showed that the scientific domains that emerge as the efficiency frontier of scientific capabilities can be used by countries’ policymakers for scientific diversification.

Suggested Citation

  • Elmira Janavi & Mohammad Javad Mansourzadeh & Mojgan Samandar Ali Eshtehardi, 2020. "A methodology for developing scientific diversification strategy of countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2229-2264, December.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03685-1
    DOI: 10.1007/s11192-020-03685-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03685-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03685-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henry Laverde-Rojas & Juan C. Correa, 2019. "Can scientific productivity impact the economic complexity of countries?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 267-282, July.
    2. Rousseau, Ronald & Yang, Liying, 2012. "Reflections on the activity index and related indicators," Journal of Informetrics, Elsevier, vol. 6(3), pages 413-421.
    3. Ricardo Hausmann & Brad Cunningham & John Matovu & Rosie Osire & Kelly Wyett, 2014. "How should Uganda grow?," Global Development Institute Working Paper Series esid-030-14, GDI, The University of Manchester.
    4. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    5. Henk F. Moed, 2016. "Iran’s scientific dominance and the emergence of South-East Asian countries as scientific collaborators in the Persian Gulf Region," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 305-314, July.
    6. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    7. Jian Wang & Bart Thijs & Wolfgang Glänzel, 2015. "Interdisciplinarity and Impact: Distinct Effects of Variety, Balance, and Disparity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    8. Éric Archambault & Étienne Vignola-Gagné & Grégoire Côté & Vincent Larivière & Yves Gingrasb, 2006. "Benchmarking scientific output in the social sciences and humanities: The limits of existing databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 329-342, September.
    9. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2018. "The effect of multidisciplinary collaborations on research diversification," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 423-433, July.
    10. Ronald Rousseau, 2019. "Balassa = revealed competitive advantage = activity," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1835-1836, December.
    11. Yury Dranev & Maxim Kotsemir & Boris Syomin, 2018. "Diversity of research publications: relation to agricultural productivity and possible implications for STI policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1565-1587, September.
    12. Anna A. Avanesova & Tatyana A. Shamliyan, 2018. "Comparative trends in research performance of the Russian universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2019-2052, September.
    13. Chakraborty, Tanmoy & Tammana, Vihar & Ganguly, Niloy & Mukherjee, Animesh, 2015. "Understanding and modeling diverse scientific careers of researchers," Journal of Informetrics, Elsevier, vol. 9(1), pages 69-78.
    14. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Di Costa, 2018. "The effects of gender, age and academic rank on research diversification," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 373-387, February.
    15. Alfredo Yegros-Yegros & Ismael Rafols & Pablo D’Este, 2015. "Does Interdisciplinary Research Lead to Higher Citation Impact? The Different Effect of Proximal and Distal Interdisciplinarity," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    16. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    17. Abramo, Giovanni & D'Angelo, Ciriaco Andrea & Di Costa, Flavia, 2019. "Diversification versus specialization in scientific research: Which strategy pays off?," Technovation, Elsevier, vol. 82, pages 51-57.
    18. C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
    19. Harzing, Anne-Wil & Giroud, Axèle, 2014. "The competitive advantage of nations: An application to academia," Journal of Informetrics, Elsevier, vol. 8(1), pages 29-42.
    20. Anton J. Nederhof, 2006. "Bibliometric monitoring of research performance in the Social Sciences and the Humanities: A Review," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(1), pages 81-100, January.
    21. Bart Thijs & Wolfgang Glänzel, 2008. "A structural analysis of publication profiles for the classification of European research institutes," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(2), pages 223-236, February.
    22. Rinia, E. J. & van Leeuwen, Th. N. & van Vuren, H. G. & van Raan, A. F. J., 2001. "Influence of interdisciplinarity on peer-review and bibliometric evaluations in physics research," Research Policy, Elsevier, vol. 30(3), pages 357-361, March.
    23. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2017. "Specialization versus diversification in research activities: the extent, intensity and relatedness of field diversification by individual scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1403-1418, September.
    24. Hugo Horta, 2018. "The declining scientific wealth of Hong Kong and Singapore," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 427-447, October.
    25. Jonathan M. Levitt & Mike Thelwall, 2008. "Is multidisciplinary research more highly cited? A macrolevel study," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(12), pages 1973-1984, October.
    26. Miguel R. Guevara & Marcelo Mendoza, 2016. "Publishing Patterns in BRIC Countries: A Network Analysis," Publications, MDPI, vol. 4(3), pages 1-14, July.
    27. Mohammad Javad Mansourzadeh & Behrooz Shahmoradi & Hossein Dehdarirad & Elmira Janavi, 2019. "A note on using revealed comparative advantages in scientometrics studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 595-599, October.
    28. Bourke, Paul & Butler, Linda, 1998. "Institutions and the map of science: matching university departments and fields of research," Research Policy, Elsevier, vol. 26(6), pages 711-718, February.
    29. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loreto Mora-Apablaza & Carlos Navarrete, 2022. "Patents as indicators of the technological position of countries on a global level?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1233-1246, March.
    2. Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    2. Francesco Giovanni Avallone & Alberto Quagli & Paola Ramassa, 2022. "Interdisciplinary research by accounting scholars: An exploratory study," FINANCIAL REPORTING, FrancoAngeli Editore, vol. 2022(2), pages 5-34.
    3. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    4. Giovanni Abramo & Ciriaco Andrea D’Angelo & Leonardo Grilli, 2024. "The role of non-scientific factors vis-à-vis the quality of publications in determining their scholarly impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 5003-5019, August.
    5. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    6. Núria Bautista-Puig & Jorge Mañana-Rodríguez & Antonio Eleazar Serrano-López, 2021. "Role taxonomy of green and sustainable science and technology journals: exportation, importation, specialization and interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3871-3892, May.
    7. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    8. Lina Xu & Steven Dellaportas & Jin Wang, 2022. "A study of interdisciplinary accounting research: analysing the diversity of cited references," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(2), pages 2131-2162, June.
    9. Fei Shu & Jesse David Dinneen & Shiji Chen, 2022. "Measuring the disparity among scientific disciplines using Library of Congress Subject Headings," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3613-3628, June.
    10. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    11. Keisuke Okamura, 2019. "Interdisciplinarity revisited: evidence for research impact and dynamism," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    12. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2017. "Do interdisciplinary research teams deliver higher gains to science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 317-336, April.
    13. Meijun Liu & Dongbo Shi & Jiang Li, 2017. "Double-edged sword of interdisciplinary knowledge flow from hard sciences to humanities and social sciences: Evidence from China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-16, September.
    14. Hackett, Edward J. & Leahey, Erin & Parker, John N. & Rafols, Ismael & Hampton, Stephanie E. & Corte, Ugo & Chavarro, Diego & Drake, John M. & Penders, Bart & Sheble, Laura & Vermeulen, Niki & Vision,, 2021. "Do synthesis centers synthesize? A semantic analysis of topical diversity in research," Research Policy, Elsevier, vol. 50(1).
    15. Meijun Liu & Sijie Yang & Yi Bu & Ning Zhang, 2023. "Female early-career scientists have conducted less interdisciplinary research in the past six decades: evidence from doctoral theses," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-16, December.
    16. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    17. Sándor Soós & Zsófia Vida & András Schubert, 2018. "Long-term trends in the multidisciplinarity of some typical natural and social sciences, and its implications on the SSH versus STM distinction," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 795-822, March.
    18. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    19. Jonathan M. Levitt & Mike Thelwall, 2016. "Long term productivity and collaboration in information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1103-1117, September.
    20. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03685-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.