IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i2d10.1007_s11192-020-03689-x.html
   My bibliography  Save this article

Performance model’s development: a novel approach encompassing ontology-based data access and visual analytics

Author

Listed:
  • Marco Angelini

    (Sapienza University of Rome)

  • Cinzia Daraio

    (Sapienza University of Rome)

  • Maurizio Lenzerini

    (Sapienza University of Rome)

  • Francesco Leotta

    (Sapienza University of Rome)

  • Giuseppe Santucci

    (Sapienza University of Rome)

Abstract

The quantitative evaluation of research is currently carried out by means of indicators calculated on data extracted and integrated by analysts who elaborate them by creating illustrative tables and plots of results. In this approach, the robustness of the metrics used and the possibility for users of the metrics to intervene in the evaluation process are completely neglected. We propose a new approach which is able to move forward, from indicators’ development to an interactive performance model’s development. It combines the advantages of the ontology-based data access paradigm with the flexibility and robustness of a visual analytics environment putting the consumer/stakeholder at the centre of the evaluation. A detailed description of such an approach is presented in the paper. The approach is illustrated and evaluated trough a comprehensive user’s study that proves the added capabilities and the benefits that a user of performance models can have by using this approach.

Suggested Citation

  • Marco Angelini & Cinzia Daraio & Maurizio Lenzerini & Francesco Leotta & Giuseppe Santucci, 2020. "Performance model’s development: a novel approach encompassing ontology-based data access and visual analytics," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 865-892, November.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:2:d:10.1007_s11192-020-03689-x
    DOI: 10.1007/s11192-020-03689-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03689-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03689-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cinzia Daraio & Maurizio Lenzerini & Claudio Leporelli & Henk F. Moed & Paolo Naggar & Andrea Bonaccorsi & Alessandro Bartolucci, 2016. "Data integration for research and innovation policy: an Ontology-Based Data Management approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 857-871, February.
    2. Cinzia Daraio & Andrea Bonaccorsi, 2017. "Beyond university rankings? Generating new indicators on universities by linking data in open platforms," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(2), pages 508-529, February.
    3. Cinzia Daraio, 2017. "A framework for the Assessment of Research and its impacts," DIAG Technical Reports 2017-04, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    5. Marco Angelini & Cinzia Daraio & Maurizio Lenzerini & Francesco Leotta & Giuseppe Santucci, 2019. "Performance Model’s development: A Novel Approach encompassing Ontology-Based Data Access and Visual Analytics," DIAG Technical Reports 2019-11, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cinzia Daraio & Simone Leo & Monica Scannapieco, 2022. "Accounting for quality in data integration systems: a completeness-aware integration approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1465-1490, March.
    2. Marco Angelini & Cinzia Daraio & Luca Urban, 2022. "A visual analytics approach for the assessment of information quality of performance models—a software review," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6827-6853, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Angelini & Cinzia Daraio & Maurizio Lenzerini & Francesco Leotta & Giuseppe Santucci, 2019. "Performance Model’s development: A Novel Approach encompassing Ontology-Based Data Access and Visual Analytics," DIAG Technical Reports 2019-11, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    2. Cinzia Daraio & Simone Leo & Monica Scannapieco, 2022. "Accounting for quality in data integration systems: a completeness-aware integration approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1465-1490, March.
    3. Avenali, Alessandro & Daraio, Cinzia & Di Leo, Simone & Wolszczak-Derlacz, Joanna, 2024. "Heterogeneity of national accounting systems, world-class universities and financial resources: What are the links?," Journal of Informetrics, Elsevier, vol. 18(2).
    4. Simpson, N.C. & Tacheva, Zhasmina & Kao, Ta-Wei, 2023. "Semi-directedness: New network concepts for supply chain research," International Journal of Production Economics, Elsevier, vol. 256(C).
    5. Wen-Min Lu & Qian Long Kweh & Chung-Wei Wang, 2021. "Integration and application of rough sets and data envelopment analysis for assessments of the investment trusts industry," Annals of Operations Research, Springer, vol. 296(1), pages 163-194, January.
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    7. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    8. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    9. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    10. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    11. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    12. Gilligan, Daniel O., 1998. "Farm Size, Productivity, And Economic Efficiency: Accounting For Differences In Efficiency Of Farms By Size In Honduras," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20918, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    14. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    15. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    16. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    17. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    18. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    19. Watkins, K. Bradley & Hristovska, Tatjana & Mazzanti, Ralph & Wilson, Charles E. Jr & Schmidt, Lance, 2014. "Measurement of Technical, Allocative, Economic, and Scale Efficiency of Rice Production in Arkansas Using Data Envelopment Analysis," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(1), pages 1-18, February.
    20. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:2:d:10.1007_s11192-020-03689-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.