IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v124y2020i1d10.1007_s11192-020-03466-w.html
   My bibliography  Save this article

Finding rising stars in bibliometric networks

Author

Listed:
  • Ali Daud

    (University of Jeddah)

  • Min Song

    (Yonsei University)

  • Malik Khizar Hayat

    (IIU)

  • Tehmina Amjad

    (IIU)

  • Rabeeh Ayaz Abbasi

    (QAU)

  • Hassan Dawood

    (University of Engineering and Technology)

  • Anwar Ghani

    (IIU)

Abstract

Finding rising stars (FRS) is a hot research topic investigated recently for diverse application domains. These days, people are more interested in finding people who will become experts shortly to fill junior positions than finding existing experts who can immediately fill senior positions. FRS can increase productivity wherever they join due to their vibrant and energetic behavior. In this paper, we assess the methods to find FRS. The existing methods are classified into ranking-, prediction-, clustering-, and analysis-based methods, and the pros and cons of these methods are discussed. Details of standard datasets and performance-evaluation measures are also provided for this growing area of research. We conclude by discussing open challenges and future directions in this prosperous area of research.

Suggested Citation

  • Ali Daud & Min Song & Malik Khizar Hayat & Tehmina Amjad & Rabeeh Ayaz Abbasi & Hassan Dawood & Anwar Ghani, 2020. "Finding rising stars in bibliometric networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 633-661, July.
  • Handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03466-w
    DOI: 10.1007/s11192-020-03466-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03466-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03466-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long T. Le & Chirag Shah, 2018. "Retrieving people: Identifying potential answerers in Community Question‐Answering," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(10), pages 1246-1258, October.
    2. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    3. Raf Guns & Ronald Rousseau, 2014. "Recommending research collaborations using link prediction and random forest classifiers," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1461-1473, November.
    4. Hao Wu & Bo Li & Yijian Pei & Jun He, 2014. "Unsupervised author disambiguation using Dempster–Shafer theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1955-1972, December.
    5. ., 2017. "Standing on the shoulders of giants," Chapters, in: Endogenous Innovation, chapter 1, pages 3-24, Edward Elgar Publishing.
    6. Amjad, Tehmina & Ding, Ying & Xu, Jian & Zhang, Chenwei & Daud, Ali & Tang, Jie & Song, Min, 2017. "Standing on the shoulders of giants," Journal of Informetrics, Elsevier, vol. 11(1), pages 307-323.
    7. Panagopoulos, George & Tsatsaronis, George & Varlamis, Iraklis, 2017. "Detecting rising stars in dynamic collaborative networks," Journal of Informetrics, Elsevier, vol. 11(1), pages 198-222.
    8. Ali Daud & Muhammad Ahmad & M. S. I. Malik & Dunren Che, 2015. "Using machine learning techniques for rising star prediction in co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1687-1711, February.
    9. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    10. Lin Zhu & Donghua Zhu & Xuefeng Wang & Scott W. Cunningham & Zhinan Wang, 2019. "An integrated solution for detecting rising technology stars in co-inventor networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 137-172, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayyaba Kanwal & Tehmina Amjad, 2024. "Research paper recommendation system based on multiple features from citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5493-5531, September.
    2. Matthias Kuppler, 2022. "Predicting the future impact of Computer Science researchers: Is there a gender bias?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6695-6732, November.
    3. Tehmina Amjad & Javeria Munir, 2021. "Investigating the impact of collaboration with authority authors: a case study of bibliographic data in field of philosophy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4333-4353, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aftab Nawaz & MSI Malik, 2022. "Rising stars prediction in reviewer network," Electronic Commerce Research, Springer, vol. 22(1), pages 53-75, March.
    2. Lin Zhu & Junjie Zhang & Scott W. Cunningham, 2022. "Domain expertise extraction for finding rising stars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5475-5495, September.
    3. Tehmina Amjad & Nafeesa Shahid & Ali Daud & Asma Khatoon, 2022. "Citation burst prediction in a bibliometric network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2773-2790, May.
    4. Tehmina Amjad & Javeria Munir, 2021. "Investigating the impact of collaboration with authority authors: a case study of bibliographic data in field of philosophy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4333-4353, May.
    5. Chung, Jaemin & Ko, Namuk & Kim, Hyeonsu & Yoon, Janghyeok, 2021. "Inventor profile mining approach for prospective human resource scouting," Journal of Informetrics, Elsevier, vol. 15(1).
    6. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    7. Liu, Xiaojuan & Wang, Chenlin & Chen, Dar-Zen & Huang, Mu-Hsuan, 2022. "Exploring perception of retraction based on mentioned status in post-retraction citations," Journal of Informetrics, Elsevier, vol. 16(3).
    8. Yubing Nie & Yifan Zhu & Qika Lin & Sifan Zhang & Pengfei Shi & Zhendong Niu, 2019. "Academic rising star prediction via scholar’s evaluation model and machine learning techniques," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 461-476, August.
    9. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    10. Ali Daud & Muhammad Ahmad & M. S. I. Malik & Dunren Che, 2015. "Using machine learning techniques for rising star prediction in co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1687-1711, February.
    11. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    12. Witting Antje, 2015. "Measuring the Use of Knowledge in Policy Development," Central European Journal of Public Policy, Sciendo, vol. 9(2), pages 54-62, December.
    13. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    14. Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
    15. Muhammad Sajid Qureshi & Ali Daud, 2021. "Fine-grained academic rankings: mapping affiliation of the influential researchers with the top ranked HEIs," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8331-8361, October.
    16. Błoński Krzysztof, 2023. "Analysis of Citations and Co-Citations of the Term ‘Word of Mouth’ Based on Publications in the Field of Social Sciences," Marketing of Scientific and Research Organizations, Sciendo, vol. 48(2), pages 111-133, June.
    17. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
    18. Kai Nishikawa, 2023. "How and why are citations between disciplines made? A citation context analysis focusing on natural sciences and social sciences and humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2975-2997, May.
    19. Kong, Xiangjie & Mao, Mengyi & Jiang, Huizhen & Yu, Shuo & Wan, Liangtian, 2019. "How does collaboration affect researchers’ positions in co-authorship networks?," Journal of Informetrics, Elsevier, vol. 13(3), pages 887-900.
    20. Xiomara S. Q. Chacon & Thiago C. Silva & Diego R. Amancio, 2020. "Comparing the impact of subfields in scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 625-639, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03466-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.