IDEAS home Printed from https://ideas.repec.org/a/vrs/cejopp/v9y2015i2p54-62n3.html
   My bibliography  Save this article

Measuring the Use of Knowledge in Policy Development

Author

Listed:
  • Witting Antje

    (Dep. Politics and Public Administration at the University of Konstanz)

Abstract

Public hearings are frequently used on all levels of government to systematically collect and analyze information in the early stages of legislative policymaking. The methods currently employed measure knowledge utilization in this context by means of citation analysis of edited articles and/or reports that summarize the information shared at these meetings. By combining citation analysis and social network analysis, this article develops a methodology that can be used to capture citations in transcripts of public hearings that precede these reports. In order to demonstrate its strengths and weaknesses, the method is utilized to analyze the 2009 hearings that informed the 2010 House of Commons Transport Committee report on developing the capacity of major roads in the United Kingdom to meet the country’s strategic transport needs. The research shows a good degree of consistency between two independent coders who employed this method to distinguish citations from non-citations and classify the data. It is concluded that the method can be utilized to reliably measure knowledge utilization at public hearings, and that it can be employed in conjunction with research that focuses on measuring citations in memos, briefings, articles or reports integrating some of the evidence given at these meetings.

Suggested Citation

  • Witting Antje, 2015. "Measuring the Use of Knowledge in Policy Development," Central European Journal of Public Policy, Sciendo, vol. 9(2), pages 54-62, December.
  • Handle: RePEc:vrs:cejopp:v:9:y:2015:i:2:p:54-62:n:3
    DOI: 10.1515/cejpp-2016-0012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/cejpp-2016-0012
    Download Restriction: no

    File URL: https://libkey.io/10.1515/cejpp-2016-0012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nancy Shulock, 1999. "The paradox of policy analysis: If it is not used, why do we produce so much of it?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 18(2), pages 226-244.
    2. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    3. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    4. Andrew Rich, 2001. "The Politics of Expertise in Congress and the News Media," Social Science Quarterly, Southwestern Social Science Association, vol. 82(3), pages 583-601, September.
    5. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    6. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    2. Liu, Xiaojuan & Wang, Chenlin & Chen, Dar-Zen & Huang, Mu-Hsuan, 2022. "Exploring perception of retraction based on mentioned status in post-retraction citations," Journal of Informetrics, Elsevier, vol. 16(3).
    3. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    4. Luca Cagliero & Paolo Garza & Mohammad Reza Kavoosifar & Elena Baralis, 2018. "Discovering cross-topic collaborations among researchers by exploiting weighted association rules," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1273-1301, August.
    5. Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
    6. Li, Kai & Chen, Pei-Ying & Yan, Erjia, 2019. "Challenges of measuring software impact through citations: An examination of the lme4 R package," Journal of Informetrics, Elsevier, vol. 13(1), pages 449-461.
    7. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    8. Rousseau, Ronald & Liu, Yuxian & Guns, Raf, 2013. "Mathematical properties of Q-measures," Journal of Informetrics, Elsevier, vol. 7(3), pages 737-745.
    9. Zhang, Chengzhi & Liu, Lifan & Wang, Yuzhuo, 2021. "Characterizing references from different disciplines: A perspective of citation content analysis," Journal of Informetrics, Elsevier, vol. 15(2).
    10. Konstantin Fursov & Alina Kadyrova, 2017. "How the analysis of transitionary references in knowledge networks and their centrality characteristics helps in understanding the genesis of growing technology areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1947-1963, June.
    11. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    12. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    13. Shiyun Wang & Yaxue Ma & Jin Mao & Yun Bai & Zhentao Liang & Gang Li, 2023. "Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 150-167, February.
    14. Li, Eldon Y. & Liao, Chien Hsiang & Yen, Hsiuju Rebecca, 2013. "Co-authorship networks and research impact: A social capital perspective," Research Policy, Elsevier, vol. 42(9), pages 1515-1530.
    15. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    16. Xiaorui Jiang & Jingqiang Chen, 2023. "Contextualised segment-wise citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5117-5158, September.
    17. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    18. Tehmina Amjad & Ying Ding & Ali Daud & Jian Xu & Vincent Malic, 2015. "Topic-based heterogeneous rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 313-334, July.
    19. Saikou Y. Diallo & Christopher J. Lynch & Ross Gore & Jose J. Padilla, 2016. "Identifying key papers within a journal via network centrality measures," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1005-1020, June.
    20. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:cejopp:v:9:y:2015:i:2:p:54-62:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.