IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i10d10.1007_s11192-021-04138-z.html
   My bibliography  Save this article

Fine-grained academic rankings: mapping affiliation of the influential researchers with the top ranked HEIs

Author

Listed:
  • Muhammad Sajid Qureshi

    (International Islamic University
    Foundation University Islamabad)

  • Ali Daud

    (International Islamic University
    University of Jeddah)

Abstract

The academic ranking process has considerably evolved in the past fifteen years and the evolution has gained the momentum in last few years. Starting with the holistic rankings of world universities in 2003, it has crossed the milestone of subject-specific rankings. Nevertheless, the academic rankings published by even the reputed ranking entities are facing various criticism, in terms of their transparency, validity, and coverage. This research effort focuses on enhancing the credibility of the ranking process through the fine-grained analysis of the academic data. The proposed fine-grained analysis drives the researcher’s profiles from the Google Scholar Citations repository. While the DBpedia repository is employed for the information about HEIs and countries. The influential researchers are identified using the ResRank methodology. While, for consistent comparison of the subject-specific rankings of global HEIs, the Grand Average Rank (GAR) metric is employed. The resultant academic rankings with respect to the Research Faculty, Research Productivity, and Research Impact make the ranking process more transparent and fine-grained. The analysis also helps in understanding the causes of differences among the academic rankings published by the ARWU, THE, and QS rankings systems. The growing interest in the subject-specific and sub-discipline-specific rankings is irreversible. The fine-grained analysis is a response to the need.

Suggested Citation

  • Muhammad Sajid Qureshi & Ali Daud, 2021. "Fine-grained academic rankings: mapping affiliation of the influential researchers with the top ranked HEIs," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8331-8361, October.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:10:d:10.1007_s11192-021-04138-z
    DOI: 10.1007/s11192-021-04138-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04138-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04138-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Soldatenkova, Anastasiia, 2016. "The ratio of top scientists to the academic staff as an indicator of the competitive strength of universities," Journal of Informetrics, Elsevier, vol. 10(2), pages 596-605.
    2. Lin, Chi-Shiou & Huang, Mu-Hsuan & Chen, Dar-Zen, 2013. "The influences of counting methods on university rankings based on paper count and citation count," Journal of Informetrics, Elsevier, vol. 7(3), pages 611-621.
    3. Emilio Ferrara & Alfonso E. Romero, 2013. "Scientific impact evaluation and the effect of self-citations: Mitigating the bias by discounting the h-index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(11), pages 2332-2339, November.
    4. Christian Bizer & Tom Heath & Tim Berners-Lee, 2009. "Linked Data - The Story So Far," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 5(3), pages 1-22, July.
    5. Lutz Bornmann & Hans‐Dieter Daniel, 2007. "What do we know about the h index?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1381-1385, July.
    6. Ortega, José Luis, 2014. "Influence of co-authorship networks in the research impact: Ego network analyses from Microsoft Academic Search," Journal of Informetrics, Elsevier, vol. 8(3), pages 728-737.
    7. Emilio Ferrara & Alfonso E. Romero, 2013. "Scientific impact evaluation and the effect of self‐citations: Mitigating the bias by discounting the h‐index," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(11), pages 2332-2339, November.
    8. John Mingers & Jesse R. O’Hanley & Musbaudeen Okunola, 2017. "Using Google Scholar institutional level data to evaluate the quality of university research," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1627-1643, December.
    9. Isidro F. Aguillo & Judit Bar-Ilan & Mark Levene & José Luis Ortega, 2010. "Comparing university rankings," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 243-256, October.
    10. ., 2017. "Standing on the shoulders of giants," Chapters, in: Endogenous Innovation, chapter 1, pages 3-24, Edward Elgar Publishing.
    11. Amjad, Tehmina & Ding, Ying & Xu, Jian & Zhang, Chenwei & Daud, Ali & Tang, Jie & Song, Min, 2017. "Standing on the shoulders of giants," Journal of Informetrics, Elsevier, vol. 11(1), pages 307-323.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tehmina Amjad & Javeria Munir, 2021. "Investigating the impact of collaboration with authority authors: a case study of bibliographic data in field of philosophy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4333-4353, May.
    2. Xiomara S. Q. Chacon & Thiago C. Silva & Diego R. Amancio, 2020. "Comparing the impact of subfields in scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 625-639, October.
    3. Shen, Hongquan & Cheng, Ying & Ju, Xiufang & Xie, Juan, 2022. "Rethinking the effect of inter-gender collaboration on research performance for scholars," Journal of Informetrics, Elsevier, vol. 16(4).
    4. Jun Zhang & Yan Hu & Zhaolong Ning & Amr Tolba & Elsayed Elashkar & Feng Xia, 2018. "AIRank: Author Impact Ranking through Positions in Collaboration Networks," Complexity, Hindawi, vol. 2018, pages 1-16, June.
    5. Hernández-Escobedo, Quetzalcoatl & Perea-Moreno, Alberto-Jesús & Manzano-Agugliaro, Francisco, 2018. "Wind energy research in Mexico," Renewable Energy, Elsevier, vol. 123(C), pages 719-729.
    6. Samreen Ayaz & Nayyer Masood & Muhammad Arshad Islam, 2018. "Predicting scientific impact based on h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 993-1010, March.
    7. Ibrahim Shehatta & Abdullah M. Al-Rubaish, 2019. "Impact of country self-citations on bibliometric indicators and ranking of most productive countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 775-791, August.
    8. Tehmina Amjad & Yusra Rehmat & Ali Daud & Rabeeh Ayaz Abbasi, 2020. "Scientific impact of an author and role of self-citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 915-932, February.
    9. Dehdarirad, Tahereh & Nasini, Stefano, 2017. "Research impact in co-authorship networks: a two-mode analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 371-388.
    10. Xie, Qing & Zhang, Xinyuan & Kim, Giyeong & Song, Min, 2022. "Exploring the influence of coauthorship with top scientists on researchers’ affiliation, research topic, productivity, and impact," Journal of Informetrics, Elsevier, vol. 16(3).
    11. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
    12. Kong, Xiangjie & Mao, Mengyi & Jiang, Huizhen & Yu, Shuo & Wan, Liangtian, 2019. "How does collaboration affect researchers’ positions in co-authorship networks?," Journal of Informetrics, Elsevier, vol. 13(3), pages 887-900.
    13. Li, Xin & Tang, Xuli, 2021. "Characterizing interdisciplinarity in drug research: A translational science perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    14. Ali Daud & Min Song & Malik Khizar Hayat & Tehmina Amjad & Rabeeh Ayaz Abbasi & Hassan Dawood & Anwar Ghani, 2020. "Finding rising stars in bibliometric networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 633-661, July.
    15. Jiaying Liu & Tao Tang & Xiangjie Kong & Amr Tolba & Zafer AL-Makhadmeh & Feng Xia, 2018. "Understanding the advisor–advisee relationship via scholarly data analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 161-180, July.
    16. Wang, Wei & Ren, Jing & Alrashoud, Mubarak & Xia, Feng & Mao, Mengyi & Tolba, Amr, 2020. "Early-stage reciprocity in sustainable scientific collaboration," Journal of Informetrics, Elsevier, vol. 14(3).
    17. Mariia Petryk & Michael Rivera & Siddharth Bhattacharya & Liangfei Qiu & Subodha Kumar, 2022. "How Network Embeddedness Affects Real-Time Performance Feedback: An Empirical Investigation," Information Systems Research, INFORMS, vol. 33(4), pages 1467-1489, December.
    18. Tehmina Amjad & Nafeesa Shahid & Ali Daud & Asma Khatoon, 2022. "Citation burst prediction in a bibliometric network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2773-2790, May.
    19. Lu, Chao & Bu, Yi & Dong, Xianlei & Wang, Jie & Ding, Ying & Larivière, Vincent & Sugimoto, Cassidy R. & Paul, Logan & Zhang, Chengzhi, 2019. "Analyzing linguistic complexity and scientific impact," Journal of Informetrics, Elsevier, vol. 13(3), pages 817-829.
    20. Shuo Xu & Mengjia An & Xin An, 2021. "Do scientific publications by editorial board members have shorter publication delays and then higher influence?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6697-6713, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:10:d:10.1007_s11192-021-04138-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.