IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v120y2019i3d10.1007_s11192-019-03166-0.html
   My bibliography  Save this article

Visualizing music similarity: clustering and mapping 500 classical music composers

Author

Listed:
  • Patrick Georges

    (University of Ottawa)

  • Ngoc Nguyen

    (Western Kentucky University)

Abstract

This paper applies clustering techniques and multi-dimensional scaling (MDS) analysis to a 500 × 500 composers’ similarity/distance matrix. The objective is to visualize or translate the similarity matrix into dendrograms and maps of classical (European art) music composers. We construct dendrograms and maps for the Baroque, Classical, and Romantic periods, and a map that represents seven centuries of European art music in one single graph. Finally, we also use linear and non-linear canonical correlation analyses to identify variables underlying the dimensions generated by the MDS methodology.

Suggested Citation

  • Patrick Georges & Ngoc Nguyen, 2019. "Visualizing music similarity: clustering and mapping 500 classical music composers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 975-1003, September.
  • Handle: RePEc:spr:scient:v:120:y:2019:i:3:d:10.1007_s11192-019-03166-0
    DOI: 10.1007/s11192-019-03166-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03166-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03166-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles H. Smith & Patrick Georges & Ngoc Nguyen, 2015. "Statistical tests for ‘related records’ search results," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1665-1677, December.
    2. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    3. Patrick Georges, 2017. "Western classical music development: a statistical analysis of composers similarity, differentiation and evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 21-53, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Farnè, 2024. "Liszt’s Étude S.136 no.1: audio data analysis of two different piano recordings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 797-822, September.
    2. Patrick Georges & Aylin Seckin, 2022. "Music information visualization and classical composers discovery: an application of network graphs, multidimensional scaling, and support vector machines," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2277-2311, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. Giovanna Boccuzzo & Licia Maron, 2017. "Proposal of a composite indicator of job quality based on a measure of weighted distances," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2357-2374, September.
    3. Jong-Seok Lee & Dan Zhu, 2012. "Shilling Attack Detection---A New Approach for a Trustworthy Recommender System," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 117-131, February.
    4. Ján Kulfan & Lenka Sarvašová & Michal Parák & Marek Dzurenko & Peter Zach, 2018. "Can late flushing trees avoid attack by moth larvae in temperate forests?," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 54(4), pages 272-283.
    5. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    6. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    7. Ivan Mihál & Eva Luptáková & Martin Pavlík, 2021. "Wood-inhabiting macromycete communities in spruce stands on former agricultural land," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-65.
    8. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    9. Simensen, Trond & Halvorsen, Rune & Erikstad, Lars, 2018. "Methods for landscape characterisation and mapping: A systematic review," Land Use Policy, Elsevier, vol. 75(C), pages 557-569.
    10. Marie Diekmann & Ludwig Theuvsen, 2019. "Value structures determining community supported agriculture: insights from Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(4), pages 733-746, December.
    11. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    12. Jarmila Horváthová & Martina Mokrišová & Mária Vrábliková, 2021. "Benchmarking—A Way of Finding Risk Factors in Business Performance," JRFM, MDPI, vol. 14(5), pages 1-17, May.
    13. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    14. Roderick McDonald, 1976. "A note on monotone polygons fitted to bivariate data," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 543-546, December.
    15. D. V. Pahan Prasada, 2013. "Domestic versus Multilateral Institutions in Bilateral Trade: A Comparative Gravity Analysis," International Economic Journal, Taylor & Francis Journals, vol. 27(1), pages 127-142, March.
    16. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    17. Mark Davison, 1976. "Fitting and testing carroll's weighted unfolding model for preferences," Psychometrika, Springer;The Psychometric Society, vol. 41(2), pages 233-247, June.
    18. Malcolm Dow & Peter Willett & Roderick McDonald & Belver Griffith & Michael Greenacre & Peter Bryant & Daniel Wartenberg & Ove Frank, 1987. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 245-278, September.
    19. Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    20. Mark Davison, 1988. "A reformulation of the general Euclidean model for the external analysis of preference data," Psychometrika, Springer;The Psychometric Society, vol. 53(3), pages 305-320, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:120:y:2019:i:3:d:10.1007_s11192-019-03166-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.