IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v119y2019i2d10.1007_s11192-019-03039-6.html
   My bibliography  Save this article

Expected, observed and relative paper scores from heterogeneous author-paper-citation networks

Author

Listed:
  • Gangan Prathap

    (APJ Abdul Kalam Technological University)

Abstract

We explore a dual score system that simultaneously evaluates the relative importance of authors and their papers from a given author-paper-citation heterogeneous network. An observed, or actual citation score for each paper is known at the paper–paper citation matrix level. From an author score obtained from an author–author citation matrix, it is possible to derive separately, an expected score for each paper. The ratio of observed to expected scores is an author based relative paper score for each paper. If the aggregation is journal based, then based on journal scores, one can derive in the same manner, expected, observed and relative paper citation scores. It follows that field based aggregation will lead to a similar family of field based paper scores.

Suggested Citation

  • Gangan Prathap, 2019. "Expected, observed and relative paper scores from heterogeneous author-paper-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1275-1279, May.
  • Handle: RePEc:spr:scient:v:119:y:2019:i:2:d:10.1007_s11192-019-03039-6
    DOI: 10.1007/s11192-019-03039-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03039-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03039-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tehmina Amjad & Yusra Rehmat & Ali Daud & Rabeeh Ayaz Abbasi, 2020. "Scientific impact of an author and role of self-citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 915-932, February.
    2. Xipeng Liu & Xinmiao Li, 2022. "Early Identification of Significant Patents Using Heterogeneous Applicant-Citation Networks Based on the Chinese Green Patent Data," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    3. Xie, Qing & Zhang, Xinyuan & Kim, Giyeong & Song, Min, 2022. "Exploring the influence of coauthorship with top scientists on researchers’ affiliation, research topic, productivity, and impact," Journal of Informetrics, Elsevier, vol. 16(3).
    4. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    5. Hayat D. Bedru & Chen Zhang & Feng Xie & Shuo Yu & Iftikhar Hussain, 2023. "CLARA: citation and similarity-based author ranking," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1091-1117, February.
    6. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).
    7. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    8. Cao, Huiying & Gao, Chao & Wang, Zhen, 2023. "Ranking academic institutions by means of institution–publication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    9. Yonghe Lu & Jiayi Luo & Ying Xiao & Hou Zhu, 2021. "Text representation model of scientific papers based on fusing multi-viewpoint information and its quality assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6937-6963, August.
    10. Yi Zhang & Fen Zhao & Jianguo Lu, 2019. "P2V: large-scale academic paper embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 399-432, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:119:y:2019:i:2:d:10.1007_s11192-019-03039-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.