IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i8d10.1007_s11192-021-04028-4.html
   My bibliography  Save this article

Text representation model of scientific papers based on fusing multi-viewpoint information and its quality assessment

Author

Listed:
  • Yonghe Lu

    (Sun Yat-sen University)

  • Jiayi Luo

    (Sun Yat-sen University)

  • Ying Xiao

    (Sun Yat-sen University)

  • Hou Zhu

    (Sun Yat-sen University)

Abstract

Text representation is the preliminary work for in-depth analysis and mining of information in scientific papers. It directly affects the effects of downstream tasks such as, scientific papers classification, clustering, and similarity calculation. However, recent researches mainly considered citation network and partial structural information, which is insufficient when representing scientific papers. Therefore, in order to improve the performance of text representation model, this paper proposed MV-HATrans, a text representation model that combines multi-viewpoint information, such as the semantic information of knowledge graph and structural information. This model extracts word information from three aspects, including contextual content, part of speech, and word meaning of WordNet. Based on combination of hierarchical attention mechanism and transformer, the model achieves the full text representation of scientific papers. Finally, this paper uses the binary experimental dataset AAPR, which indicates whether scientific papers are accepted or not, and applies the proposed model of text representation to achieve the goal of automatic quality assessment. Results show that in the quality classification of scientific papers, adopting part-of-speech information and semantic information based on WordNet definitions can effectively achieve the accuracy of prediction as 70.14%. Among all the structural modules, authors and abstracts contributes the most to the quality classification of scientific papers, especially authors as 9.51%.

Suggested Citation

  • Yonghe Lu & Jiayi Luo & Ying Xiao & Hou Zhu, 2021. "Text representation model of scientific papers based on fusing multi-viewpoint information and its quality assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6937-6963, August.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:8:d:10.1007_s11192-021-04028-4
    DOI: 10.1007/s11192-021-04028-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04028-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04028-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yves Fassin, 2018. "A new qualitative rating system for scientific publications and a fame index for academics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(11), pages 1396-1399, November.
    2. Negin Salimi, 2017. "Quality assessment of scientific outputs using the BWM," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 195-213, July.
    3. Shu Zhao & Dong Zhang & Zhen Duan & Jie Chen & Yan-ping Zhang & Jie Tang, 2018. "A novel classification method for paper-reviewer recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(3), pages 1293-1313, June.
    4. Titipat Achakulvisut & Daniel E Acuna & Tulakan Ruangrong & Konrad Kording, 2016. "Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-11, July.
    5. Kevin Heffernan & Simone Teufel, 2018. "Identifying problems and solutions in scientific text," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1367-1382, August.
    6. Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
    7. Vahe Tshitoyan & John Dagdelen & Leigh Weston & Alexander Dunn & Ziqin Rong & Olga Kononova & Kristin A. Persson & Gerbrand Ceder & Anubhav Jain, 2019. "Unsupervised word embeddings capture latent knowledge from materials science literature," Nature, Nature, vol. 571(7763), pages 95-98, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiqin Lv & Zheng Xie & Xiaojing Zuo & Yiping Song, 2022. "A multi-view method of scientific paper classification via heterogeneous graph embeddings," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4847-4872, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Fen Zhao & Jianguo Lu, 2019. "P2V: large-scale academic paper embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 399-432, October.
    2. Ananthan Nambiar & Tobias Rubel & James McCaull & Jon deVries & Mark Bedau, 2021. "Dropping diversity of products of large US firms: Models and measures," Papers 2110.08367, arXiv.org.
    3. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    4. Željko Stević & Irena Đalić & Dragan Pamučar & Zdravko Nunić & Slavko Vesković & Marko Vasiljević & Ilija Tanackov, 2019. "A new hybrid model for quality assessment of scientific conferences based on Rough BWM and SERVQUAL," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 1-30, April.
    5. Jason Youn & Navneet Rai & Ilias Tagkopoulos, 2022. "Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Ana Teresa Santos & Sandro Mendonça, 2022. "Do papers (really) match journals’ “aims and scope”? A computational assessment of innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7449-7470, December.
    7. Zongrui Pei & Junqi Yin & Peter K. Liaw & Dierk Raabe, 2023. "Toward the design of ultrahigh-entropy alloys via mining six million texts," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Shaoshuo Li & Baixing Chen & Hao Chen & Zhen Hua & Yang Shao & Heng Yin & Jianwei Wang, 2021. "Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    9. John Dagdelen & Alexander Dunn & Sanghoon Lee & Nicholas Walker & Andrew S. Rosen & Gerbrand Ceder & Kristin A. Persson & Anubhav Jain, 2024. "Structured information extraction from scientific text with large language models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.
    11. Mališa Žižović & Dragan Pamučar & Goran Ćirović & Miodrag M. Žižović & Boža D. Miljković, 2020. "A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL)," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    12. Yuzhuo Wang & Chengzhi Zhang & Kai Li, 2022. "A review on method entities in the academic literature: extraction, evaluation, and application," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2479-2520, May.
    13. Jianhong Luo & Minjuan Chai & Xuwei Pan, 2021. "Identification of Research Priorities during the COVID-19 Pandemic: Implications for Its Management," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    14. Yi Jiang & Rui Meng & Yong Huang & Wei Lu & Jiawei Liu, 2023. "Generating keyphrases for readers: A controllable keyphrase generation framework," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(7), pages 759-774, July.
    15. Aman Kumar & Binil Starly, 2022. "“FabNER”: information extraction from manufacturing process science domain literature using named entity recognition," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2393-2407, December.
    16. Pradhan, Dinesh K. & Chakraborty, Joyita & Choudhary, Prasenjit & Nandi, Subrata, 2020. "An automated conflict of interest based greedy approach for conference paper assignment system," Journal of Informetrics, Elsevier, vol. 14(2).
    17. Xipeng Liu & Xinmiao Li, 2022. "Early Identification of Significant Patents Using Heterogeneous Applicant-Citation Networks Based on the Chinese Green Patent Data," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    18. Govindan, Kannan & Shankar, K. Madan & Kannan, Devika, 2020. "Achieving sustainable development goals through identifying and analyzing barriers to industrial sharing economy: A framework development," International Journal of Production Economics, Elsevier, vol. 227(C).
    19. Sotaro Shibayama & Deyun Yin & Kuniko Matsumoto, 2021. "Measuring novelty in science with word embedding," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-16, July.
    20. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:8:d:10.1007_s11192-021-04028-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.