IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v124y2020i1d10.1007_s11192-020-03478-6.html
   My bibliography  Save this article

Diffusion and adoption: an explanatory model of “question mark” and “rising star” articles

Author

Listed:
  • Guoqiang Liang

    (Dalian University of Technology
    Indiana University)

  • Haiyan Hou

    (Dalian University of Technology)

  • Qiao Chen

    (Dalian University of Technology)

  • Zhigang Hu

    (Dalian University of Technology)

Abstract

The creative process is essentially Darwinian, and only a small proportion of creative ideas have been selected for further development. This article builds a diffusion–adoption model of academic articles and re-explores the influencing factors of “highly used but rarely cited” and “lowly used but highly cited” papers. Looking through the lens of Rogers’s innovation diffusion theory provides a new perspective on the citation mechanism and advances our understanding of what citation counts measure. Here, we take highly used (top 1%) articles published in the year 2013 in Web of Science as examples of the most successfully diffused papers and classify these articles into four groups, based on the Boston consulting group matrix. We then classify the diffusion and adoption of these articles into three stages, namely: idea gatekeeping, idea spreading, and action, and compare the difference between question mark and rising star articles on funding, number of references, publishing time, journal quartile, and number of authors. Results show that publishing time (β = 1.820) and usage count (β = 0.899) act as positive independents, and references (β = − 0.016) act as a negative independent to the adoption rate of rising star articles (p

Suggested Citation

  • Guoqiang Liang & Haiyan Hou & Qiao Chen & Zhigang Hu, 2020. "Diffusion and adoption: an explanatory model of “question mark” and “rising star” articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 219-232, July.
  • Handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03478-6
    DOI: 10.1007/s11192-020-03478-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03478-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03478-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    2. Loet Leydesdorff, 2012. "Accounting for the uncertainty in the evaluation of percentile ranks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2349-2350, November.
    3. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    4. Hiroyuki Kodama & Kenji Watatani & Shintaro Sengoku, 2012. "Competency-based assessment of academic interdisciplinary research and implication to university management," Research Evaluation, Oxford University Press, vol. 22(2), pages 93-104, December.
    5. Chai, Sen & Menon, Anoop, 2019. "Breakthrough recognition: Bias against novelty and competition for attention," Research Policy, Elsevier, vol. 48(3), pages 733-747.
    6. Vincent Larivière & Yves Gingras & Cassidy R. Sugimoto & Andrew Tsou, 2015. "Team size matters: Collaboration and scientific impact since 1900," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1323-1332, July.
    7. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    8. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    9. Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
    10. Per Ahlgren & Cristian Colliander & Peter Sjögårde, 2018. "Exploring the relation between referencing practices and citation impact: A large†scale study based on Web of Science data," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(5), pages 728-743, May.
    11. Parolo, Pietro Della Briotta & Pan, Raj Kumar & Ghosh, Rumi & Huberman, Bernardo A. & Kaski, Kimmo & Fortunato, Santo, 2015. "Attention decay in science," Journal of Informetrics, Elsevier, vol. 9(4), pages 734-745.
    12. Lutz Bornmann, 2013. "How to analyze percentile citation impact data meaningfully in bibliometrics: The statistical analysis of distributions, percentile rank classes, and top-cited papers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(3), pages 587-595, March.
    13. Yujia Zhai & Ying Ding & Fang Wang, 2018. "Measuring the diffusion of an innovation: A citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 368-379, March.
    14. Xianwen Wang & Chen Liu & Wenli Mao & Zhichao Fang, 2015. "Erratum to: The open access advantage considering citation, article usage and social media attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1149-1149, June.
    15. Jeffrey L. Furman & Scott Stern, 2011. "Climbing atop the Shoulders of Giants: The Impact of Institutions on Cumulative Research," American Economic Review, American Economic Association, vol. 101(5), pages 1933-1963, August.
    16. Chao Min & Ying Ding & Jiang Li & Yi Bu & Lei Pei & Jianjun Sun, 2018. "Innovation or imitation: The diffusion of citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(10), pages 1271-1282, October.
    17. Xiangjie Kong & Huizhen Jiang & Wei Wang & Teshome Megersa Bekele & Zhenzhen Xu & Meng Wang, 2017. "Exploring dynamic research interest and academic influence for scientific collaborator recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 369-385, October.
    18. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    19. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    20. Xianwen Wang & Chen Liu & Wenli Mao & Zhichao Fang, 2015. "The open access advantage considering citation, article usage and social media attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 555-564, May.
    21. Yassine Gargouri & Chawki Hajjem & Vincent Larivière & Yves Gingras & Les Carr & Tim Brody & Stevan Harnad, 2010. "Self-Selected or Mandated, Open Access Increases Citation Impact for Higher Quality Research," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-12, October.
    22. Lutz Bornmann & Werner Marx, 2014. "The wisdom of citing scientists," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(6), pages 1288-1292, June.
    23. Bornmann, Lutz, 2014. "Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics," Journal of Informetrics, Elsevier, vol. 8(4), pages 895-903.
    24. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    25. Xianwen Wang & Zhichao Fang & Xiaoling Sun, 2016. "Usage patterns of scholarly articles on Web of Science: a study on Web of Science usage count," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 917-926, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
    2. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    3. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    4. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.
    5. Zhiqi Wang & Wolfgang Glänzel & Yue Chen, 2020. "The impact of preprints in Library and Information Science: an analysis of citations, usage and social attention indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1403-1423, November.
    6. Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
    7. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    8. Chunli Wei & Jingyi Zhao & Jue Ni & Jiang Li, 2023. "What does open peer review bring to scientific articles? Evidence from PLoS journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2763-2776, May.
    9. Mingkun Wei & Abdolreza Noroozi Chakoli, 2020. "Evaluating the relationship between the academic and social impact of open access books based on citation behaviors and social media attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2401-2420, December.
    10. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    11. Cristina López-Duarte & Marta M. Vidal-Suárez & Belén González-Díaz, 2019. "Cross-national distance and international business: an analysis of the most influential recent models," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 173-208, October.
    12. Yan Yan & Shanwu Tian & Jingjing Zhang, 2020. "The impact of a paper’s new combinations and new components on its citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 895-913, February.
    13. Hou, Jianhua & Wang, Dongyi & Li, Jing, 2022. "A new method for measuring the originality of academic articles based on knowledge units in semantic networks," Journal of Informetrics, Elsevier, vol. 16(3).
    14. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
    15. Tahamtan, Iman & Bornmann, Lutz, 2018. "Creativity in science and the link to cited references: Is the creative potential of papers reflected in their cited references?," Journal of Informetrics, Elsevier, vol. 12(3), pages 906-930.
    16. Zhongyi Wang & Keying Wang & Jiyue Liu & Jing Huang & Haihua Chen, 2022. "Measuring the innovation of method knowledge elements in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2803-2827, May.
    17. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    18. Giovanni Abramo & Ciriaco Andrea D’Angelo & Leonardo Grilli, 2024. "The role of non-scientific factors vis-à-vis the quality of publications in determining their scholarly impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 5003-5019, August.
    19. Xinyuan Zhang & Qing Xie & Chaemin Song & Min Song, 2022. "Mining the evolutionary process of knowledge through multiple relationships between keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2023-2053, April.
    20. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03478-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.