IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v112y2017i2d10.1007_s11192-017-2410-2.html
   My bibliography  Save this article

Name usage pattern in the synonym ambiguity problem in bibliographic data

Author

Listed:
  • Janaína Gomide

    (Federal University of Rio de Janeiro)

  • Hugo Kling

    (Federal University of Rio de Janeiro)

  • Daniel Figueiredo

    (Federal University of Rio de Janeiro)

Abstract

Individuals often appear with multiple names when considering large bibliographic datasets, giving rise to the synonym ambiguity problem. Although most related works focus on resolving name ambiguities, this work focus on classifying and characterizing multiple name usage patterns—the root cause for such ambiguity. By considering real examples bibliographic datasets, we identify and classify patterns of multiple name usage by individuals, which can be interpreted as name change, rare name usage, and name co-appearance. In particular, we propose a methodology to classify name usage patterns through a supervised classification task and show that different classes are robust (across datasets) and exhibit significantly different properties. We show that the collaboration network structure emerging around nodes corresponding to ambiguous names from different name usage patterns have strikingly different characteristics, such as their common neighborhood and degree evolution. We believe such differences in network structure and in name usage patterns can be leveraged to design more efficient name disambiguation algorithms that target the synonym problem.

Suggested Citation

  • Janaína Gomide & Hugo Kling & Daniel Figueiredo, 2017. "Name usage pattern in the synonym ambiguity problem in bibliographic data," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 747-766, August.
  • Handle: RePEc:spr:scient:v:112:y:2017:i:2:d:10.1007_s11192-017-2410-2
    DOI: 10.1007/s11192-017-2410-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2410-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2410-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Wang & Kaspars Berzins & Diana Hicks & Julia Melkers & Fang Xiao & Diogo Pinheiro, 2012. "A boosted-trees method for name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 391-411, November.
    2. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    3. Wanli Liu & Rezarta Islamaj Doğan & Sun Kim & Donald C. Comeau & Won Kim & Lana Yeganova & Zhiyong Lu & W. John Wilbur, 2014. "Author name disambiguation for PubMed," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 765-781, April.
    4. Brent D Fegley & Vetle I Torvik, 2013. "Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    5. Dongwook Shin & Taehwan Kim & Joongmin Choi & Jungsun Kim, 2014. "Author name disambiguation using a graph model with node splitting and merging based on bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 15-50, July.
    6. Li, Guan-Cheng & Lai, Ronald & D’Amour, Alexander & Doolin, David M. & Sun, Ye & Torvik, Vetle I. & Yu, Amy Z. & Fleming, Lee, 2014. "Disambiguation and co-authorship networks of the U.S. patent inventor database (1975–2010)," Research Policy, Elsevier, vol. 43(6), pages 941-955.
    7. Jinseok Kim & Jana Diesner, 2016. "Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(6), pages 1446-1461, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhang & Wei Lu & Jinqing Yang, 2023. "LAGOS‐AND: A large gold standard dataset for scholarly author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 168-185, February.
    2. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    3. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deyun Yin & Kazuyuki Motohashi & Jianwei Dang, 2020. "Large-scale name disambiguation of Chinese patent inventors (1985–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 765-790, February.
    2. Jinseok Kim, 2019. "A fast and integrative algorithm for clustering performance evaluation in author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 661-681, August.
    3. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    4. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    5. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    6. Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
    7. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    8. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    9. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    10. Jinseok Kim & Jana Diesner, 2019. "Formational bounds of link prediction in collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 687-706, May.
    11. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    12. Andrea Ancona & Roy Cerqueti & Gianluca Vagnani, 2023. "A novel methodology to disambiguate organization names: an application to EU Framework Programmes data," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4447-4474, August.
    13. Jinseok Kim & Liang Tao & Seok-Hyoung Lee & Jana Diesner, 2016. "Evolution and structure of scientific co-publishing network in Korea between 1948–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 27-41, April.
    14. Ventura, Samuel L. & Nugent, Rebecca & Fuchs, Erica R.H., 2015. "Seeing the non-stars: (Some) sources of bias in past disambiguation approaches and a new public tool leveraging labeled records," Research Policy, Elsevier, vol. 44(9), pages 1672-1701.
    15. Helena Mihaljević & Lucía Santamaría, 2021. "Disambiguation of author entities in ADS using supervised learning and graph theory methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3893-3917, May.
    16. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    17. Šubelj, Lovro & Fiala, Dalibor & Ciglarič, Tadej & Kronegger, Luka, 2019. "Convexity in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 13(1), pages 10-31.
    18. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    19. Jan Schulz, 2016. "Using Monte Carlo simulations to assess the impact of author name disambiguation quality on different bibliometric analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1283-1298, June.
    20. Rehs, Andreas, 2021. "A supervised machine learning approach to author disambiguation in the Web of Science," Journal of Informetrics, Elsevier, vol. 15(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:112:y:2017:i:2:d:10.1007_s11192-017-2410-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.