Revisiting Non-Parametric Maximum Likelihood Estimation of Current Status Data with Competing Risks
Author
Abstract
Suggested Citation
DOI: 10.1007/s13571-018-0172-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nicholas P. Jewell, 2003. "Nonparametric estimation from current status data with competing risks," Biometrika, Biometrika Trust, vol. 90(1), pages 183-197, March.
- Michael G. Hudgens & Glen A. Satten & Ira M. Longini, 2001. "Nonparametric Maximum Likelihood Estimation for Competing Risks Survival Data Subject to Interval Censoring and Truncation," Biometrics, The International Biometric Society, vol. 57(1), pages 74-80, March.
- M. H. Maathuis & M. G. Hudgens, 2011. "Nonparametric inference for competing risks current status data with continuous, discrete or grouped observation times," Biometrika, Biometrika Trust, vol. 98(2), pages 325-340.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
- Li, Chenxi, 2016. "Cause-specific hazard regression for competing risks data under interval censoring and left truncation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 197-208.
- Somnath Datta & Rajeshwari Sundaram, 2006. "Nonparametric Estimation of Stage Occupation Probabilities in a Multistage Model with Current Status Data," Biometrics, The International Biometric Society, vol. 62(3), pages 829-837, September.
- Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
- Michael G. Hudgens & Chenxi Li & Jason P. Fine, 2014. "Parametric likelihood inference for interval censored competing risks data," Biometrics, The International Biometric Society, vol. 70(1), pages 1-9, March.
- Halina Frydman & Michael Szarek, 2009. "Nonparametric Estimation in a Markov “Illness–Death” Process from Interval Censored Observations with Missing Intermediate Transition Status," Biometrics, The International Biometric Society, vol. 65(1), pages 143-151, March.
- Lim, Johan & Wang, Xinlei & Choi, Wanseok, 2009. "Maximum likelihood estimation of ordered multinomial probabilities by geometric programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 889-893, February.
- Gürler, Ülkü & Deniz Yenigün, C., 2011. "Full and conditional likelihood approaches for hazard change-point estimation with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2856-2870, October.
- Jiahui Li & Qiqing Yu, 2016. "A consistent NPMLE of the joint distribution function with competing risks data under the dependent masking and right-censoring model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 63-99, January.
- Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
- Michael G. Hudgens & Marloes H. Maathuis & Peter B. Gilbert, 2007. "Nonparametric Estimation of the Joint Distribution of a Survival Time Subject to Interval Censoring and a Continuous Mark Variable," Biometrics, The International Biometric Society, vol. 63(2), pages 372-380, June.
- Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
- Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.
More about this item
Keywords
Monitoring time; Isotonic constraints; Re-parametrization; Cover percentage; Observed Mahalanobis distance; Interval hazards; EM algorithm; Complete data likelihood;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:81:y:2019:i:1:d:10.1007_s13571-018-0172-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.