IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v57y2001i1p74-80.html
   My bibliography  Save this article

Nonparametric Maximum Likelihood Estimation for Competing Risks Survival Data Subject to Interval Censoring and Truncation

Author

Listed:
  • Michael G. Hudgens
  • Glen A. Satten
  • Ira M. Longini

Abstract

Summary. We derive the nonparametric maximum likelihood estimate (NPMLE) of the cumulative incidence functions for competing risks survival data subject to interval censoring and truncation. Since the cumulative incidence function NPMLEs give rise to an estimate of the survival distribution which can be undefined over a potentially larger set of regions than the NPMLE of the survival function obtained ignoring failure type, we consider an alternative pseudolikelihood estimator. The methods are then applied to data from a cohort of injecting drug users in Thailand susceptible to infection from HIV‐1 subtypes B and E.

Suggested Citation

  • Michael G. Hudgens & Glen A. Satten & Ira M. Longini, 2001. "Nonparametric Maximum Likelihood Estimation for Competing Risks Survival Data Subject to Interval Censoring and Truncation," Biometrics, The International Biometric Society, vol. 57(1), pages 74-80, March.
  • Handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:74-80
    DOI: 10.1111/j.0006-341X.2001.00074.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0006-341X.2001.00074.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0006-341X.2001.00074.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael G. Hudgens & Marloes H. Maathuis & Peter B. Gilbert, 2007. "Nonparametric Estimation of the Joint Distribution of a Survival Time Subject to Interval Censoring and a Continuous Mark Variable," Biometrics, The International Biometric Society, vol. 63(2), pages 372-380, June.
    2. Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.
    3. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    4. Michael G. Hudgens & Chenxi Li & Jason P. Fine, 2014. "Parametric likelihood inference for interval censored competing risks data," Biometrics, The International Biometric Society, vol. 70(1), pages 1-9, March.
    5. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    6. Tamalika Koley & Anup Dewanji, 2019. "Revisiting Non-Parametric Maximum Likelihood Estimation of Current Status Data with Competing Risks," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 39-59, June.
    7. Halina Frydman & Michael Szarek, 2009. "Nonparametric Estimation in a Markov “Illness–Death” Process from Interval Censored Observations with Missing Intermediate Transition Status," Biometrics, The International Biometric Society, vol. 65(1), pages 143-151, March.
    8. Somnath Datta & Rajeshwari Sundaram, 2006. "Nonparametric Estimation of Stage Occupation Probabilities in a Multistage Model with Current Status Data," Biometrics, The International Biometric Society, vol. 62(3), pages 829-837, September.
    9. Gürler, Ülkü & Deniz Yenigün, C., 2011. "Full and conditional likelihood approaches for hazard change-point estimation with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2856-2870, October.
    10. Li, Chenxi, 2016. "Cause-specific hazard regression for competing risks data under interval censoring and left truncation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 197-208.
    11. Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
    12. Jiahui Li & Qiqing Yu, 2016. "A consistent NPMLE of the joint distribution function with competing risks data under the dependent masking and right-censoring model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 63-99, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:74-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.