IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v80y2018i1d10.1007_s13571-018-0154-5.html
   My bibliography  Save this article

Application of Two Gamma Distributions Mixture to Financial Auditing

Author

Listed:
  • Janusz L. Wywiał

    (University of Economics in Katowice)

Abstract

The considered problem can be treated as a particular topic in the field of testing some substantive hypothesis in financial auditing. The main theme of the paper is the well-known problem of testing hypothesis on admissibility of the population total of accounting errors amounts. The set of items with non-zero errors amounts is the domain in the accounting population. The book amounts are treated as values of a random variable which distribution is a mixture of the distributions of correct amount and the distribution of the true amount contaminated by error. The mixing coefficient is equal to the proportion of the items with non-zero errors amounts. The mixture of two gamma distributions is taken into account. The well-known method of moments and likelihood method are proposed to estimate parameters of distribution. It let us construct some statistic to test the outlined hypothesis. Moreover, the well-known likelihood ratio test is considered.

Suggested Citation

  • Janusz L. Wywiał, 2018. "Application of Two Gamma Distributions Mixture to Financial Auditing," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 1-18, May.
  • Handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-018-0154-5
    DOI: 10.1007/s13571-018-0154-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-018-0154-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-018-0154-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    2. Kvanli, Alan H & Shen, Yaung Kaung & Deng, Lih Yuan, 1998. "Construction of Confidence Intervals for the Mean of a Population Containing Many Zero Values," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 362-368, July.
    3. Frost, Pa & Tamura, H, 1986. "Accuracy Of Auxiliary Information Interval Estimation In Statistical Auditing," Journal of Accounting Research, Wiley Blackwell, vol. 24(1), pages 57-75.
    4. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Paper 1127, Economics Department, Queen's University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing He & Jiahua Chen, 2022. "Consistency of the MLE under a two-parameter Gamma mixture model with a structural shape parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 951-975, November.
    2. Janusz L. Wywiał, 2020. "Estimating the population mean using a continuous sampling design dependent on an auxiliary variable," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    2. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    3. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    4. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    5. Kim Huynh & David Jacho-Chávez & Robert Petrunia & Marcel Voia, 2015. "A nonparametric analysis of firm size, leverage and labour productivity distribution dynamics," Empirical Economics, Springer, vol. 48(1), pages 337-360, February.
    6. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    7. Yicong Lin & Hanno Reuvers, 2020. "Cointegrating Polynomial Regressions with Power Law Trends: Environmental Kuznets Curve or Omitted Time Effects?," Papers 2009.02262, arXiv.org, revised Dec 2021.
    8. Emma Iglesias & Jean Marie Dufour, 2004. "Finite Sample and Optimal Inference in Possibly Nonstationary ARCH Models with Gaussian and Heavy-Tailed Errors," Econometric Society 2004 North American Summer Meetings 161, Econometric Society.
    9. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    10. Jean-Marie Dufour & Joachim Wilde, 2018. "Weak identification in probit models with endogenous covariates," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 611-631, October.
    11. Janusz L. Wywiał, 2020. "Estimating the population mean using a continuous sampling design dependent on an auxiliary variable," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 1-16, December.
    12. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    13. Chesher, Andrew & Dhaene, Geert & Gouriéroux, Christian & Scaillet, Olivier, 1999. "Bartlett Identities Tests," LIDAM Discussion Papers IRES 1999019, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    14. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2014. "Exact confidence sets and goodness-of-fit methods for stable distributions," Journal of Econometrics, Elsevier, vol. 181(1), pages 3-14.
    15. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    16. Jean-Marie Dufour & Lynda Khalaf & Marie-Claude Beaulieu, 2010. "Multivariate residual-based finite-sample tests for serial dependence and ARCH effects with applications to asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 263-285.
    17. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009. "Asymmetric multivariate normal mixture GARCH," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
    18. Luca Fanelli & Giulio Palomba, 2011. "Simulation‐based tests of forward‐looking models under VAR learning dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 762-782, August.
    19. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
    20. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2009. "Finite sample multivariate tests of asset pricing models with coskewness," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2008-2021, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-018-0154-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.