IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v85y2023i2d10.1007_s13171-023-00310-0.html
   My bibliography  Save this article

Test for Homogeneity of Random Objects on Manifolds with Applications to Biological Shape Analysis

Author

Listed:
  • Ruite Guo

    (Florida State University)

  • Hwiyoung Lee

    (University of Maryland)

  • Vic Patrangenaru

    (Florida State University)

Abstract

Methods of testing for the equality of two distributions on a manifold are unveiled in this paper. One defines the extrinsic energy distance associated with two probability measures on a complete metric space embedded in a numerical space. One derives the extrinsic energy statistic test for homogeneity of such distributions. This test is validated via a simulation example on the Kendall space of planar k-ads with a Veronese-Whitney (VW) embedding. Imaging data driven examples are also considered here. In one application, central to the paper, one tests for homogeneity the distributions of planar Kendall shapes of midsections of the Corpus Callosum in a clinically normal population vs a population of ADHD diagnosed individuals; these distributions are not significantly different, although they are known to have highly significant VW-means. On the other hand, in 3D, the reflection shapes of configurations of Acrosterigma Magnum shells are not significantly different, and do not have significantly similar different 3D Schoenberg means.

Suggested Citation

  • Ruite Guo & Hwiyoung Lee & Vic Patrangenaru, 2023. "Test for Homogeneity of Random Objects on Manifolds with Applications to Biological Shape Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1178-1204, August.
  • Handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-023-00310-0
    DOI: 10.1007/s13171-023-00310-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-023-00310-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-023-00310-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ellingson, Leif & Patrangenaru, Vic & Ruymgaart, Frits, 2013. "Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 317-333.
    2. Bandulasiri, Ananda & Bhattacharya, Rabi N. & Patrangenaru, Vic, 2009. "Nonparametric inference for extrinsic means on size-and-(reflection)-shape manifolds with applications in medical imaging," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1867-1882, October.
    3. Stephan Huckemann, 2012. "On the meaning of mean shape: manifold stability, locus and the two sample test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1227-1259, December.
    4. Wang, Yunfan & Patrangenaru, Vic & Guo, Ruite, 2020. "A Central Limit Theorem for extrinsic antimeans and estimation of Veronese–Whitney means and antimeans on planar Kendall shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    5. Hendriks, Harrie & Landsman, Zinoviy, 1998. "Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 227-243, November.
    6. Victor Patrangenaru & Robert Paige & K. David Yao & Mingfei Qiu & David Lester, 2016. "Projective shape analysis of contours and finite 3D configurations from digital camera images," Statistical Papers, Springer, vol. 57(4), pages 1017-1040, December.
    7. Chao Huang & Martin Styner & Hongtu Zhu, 2015. "Clustering High-Dimensional Landmark-Based Two-Dimensional Shape Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 946-961, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    2. Vic Patrangenaru & Yifang Deng, 2021. "Extrinsic Regression and Anti-Regression on Projective Shape Manifolds," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 629-646, June.
    3. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    4. Osborne, Daniel & Patrangenaru, Vic & Ellingson, Leif & Groisser, David & Schwartzman, Armin, 2013. "Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and Diffusion Tensor Image analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 163-175.
    5. Vic Patrangenaru & Peter Bubenik & Robert L. Paige & Daniel Osborne, 2019. "Challenges in Topological Object Data Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 244-271, February.
    6. Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
    7. Stephan F. Huckemann, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 71-75, March.
    8. Benoit Ahanda & Daniel E. Osborne & Leif Ellingson, 2022. "Robustness of lognormal confidence regions for means of symmetric positive definite matrices when applied to mixtures of lognormal distributions," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 281-303, December.
    9. Victor Patrangenaru & Robert Paige & K. David Yao & Mingfei Qiu & David Lester, 2016. "Projective shape analysis of contours and finite 3D configurations from digital camera images," Statistical Papers, Springer, vol. 57(4), pages 1017-1040, December.
    10. Luca Frigau & Claudio Conversano & Francesco Mola, 2021. "Consistent validation of gray-level thresholding image segmentation algorithms based on machine learning classifiers," Statistical Papers, Springer, vol. 62(3), pages 1363-1386, June.
    11. Wang, Yunfan & Patrangenaru, Vic & Guo, Ruite, 2020. "A Central Limit Theorem for extrinsic antimeans and estimation of Veronese–Whitney means and antimeans on planar Kendall shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    12. Fabian J.E. Telschow & Michael R. Pierrynowski & Stephan F. Huckemann, 2021. "Functional inference on rotational curves under sample‐specific group actions and identification of human gait," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1256-1276, December.
    13. Stephan Huckemann, 2012. "On the meaning of mean shape: manifold stability, locus and the two sample test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1227-1259, December.
    14. Luis Gutiérrez & Ramsés H. Mena & Carlos Díaz-Avalos, 2020. "Linear models for statistical shape analysis based on parametrized closed curves," Statistical Papers, Springer, vol. 61(3), pages 1213-1229, June.
    15. Kovacev-Nikolic Violeta & Bubenik Peter & Nikolić Dragan & Heo Giseon, 2016. "Using persistent homology and dynamical distances to analyze protein binding," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 19-38, March.
    16. Bhattacharya, Rabi & Oliver, Rachel, 2020. "Superiority of Bayes estimators over the MLE in high dimensional multinomial models and its implication for nonparametric Bayes theory," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    17. H. Fotouhi & M. Golalizadeh, 2015. "Highly resistant gradient descent algorithm for computing intrinsic mean shape on similarity shape spaces," Statistical Papers, Springer, vol. 56(2), pages 391-410, May.
    18. Lizhen Lin & Brian St. Thomas & Hongtu Zhu & David B. Dunson, 2017. "Extrinsic Local Regression on Manifold-Valued Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1261-1273, July.
    19. Ellingson, Leif & Patrangenaru, Vic & Ruymgaart, Frits, 2013. "Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 317-333.
    20. Vic Patrangenaru & Mingfei Qiu & Marius Buibas, 2014. "Two Sample Tests for Mean 3D Projective Shapes from Digital Camera Images," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 485-506, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-023-00310-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.