IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v178y2020ics0047259x19301484.html
   My bibliography  Save this article

A Central Limit Theorem for extrinsic antimeans and estimation of Veronese–Whitney means and antimeans on planar Kendall shape spaces

Author

Listed:
  • Wang, Yunfan
  • Patrangenaru, Vic
  • Guo, Ruite

Abstract

This article is concerned with random objects in the complex projective space ℂPk−2. It is shown that the Veronese–Whitney (VW) antimean, which is the extrinsic antimean of a random point on ℂPk−2 relative to the VW-embedding, is given by the point on ℂPk−2 represented by the eigenvector corresponding to the smallest eigenvalue of the expected mean of the VW-embedding of the random point, provided this eigenvalue is simple. We also derive a CLT for extrinsic sample antimeans, and an asymptotic χ2-distribution of an appropriately studentized statistic, based on the extrinsic antimean, which in the particular case of a VW-embedding is then used to construct nonparametric bootstrap confidence regions for the VW-antimean planar Kendall shape. Simulations studies and an application to medical imaging are illustrating the proposed methodology.

Suggested Citation

  • Wang, Yunfan & Patrangenaru, Vic & Guo, Ruite, 2020. "A Central Limit Theorem for extrinsic antimeans and estimation of Veronese–Whitney means and antimeans on planar Kendall shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:jmvana:v:178:y:2020:i:c:s0047259x19301484
    DOI: 10.1016/j.jmva.2020.104600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19301484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendriks, Harrie & Landsman, Zinoviy, 1998. "Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 227-243, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruite Guo & Hwiyoung Lee & Vic Patrangenaru, 2023. "Test for Homogeneity of Random Objects on Manifolds with Applications to Biological Shape Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1178-1204, August.
    2. Stephan F. Huckemann, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 71-75, March.
    3. Vic Patrangenaru & Yifang Deng, 2021. "Extrinsic Regression and Anti-Regression on Projective Shape Manifolds," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 629-646, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vic Patrangenaru & Yifang Deng, 2021. "Extrinsic Regression and Anti-Regression on Projective Shape Manifolds," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 629-646, June.
    2. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    3. Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
    4. Benoit Ahanda & Daniel E. Osborne & Leif Ellingson, 2022. "Robustness of lognormal confidence regions for means of symmetric positive definite matrices when applied to mixtures of lognormal distributions," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 281-303, December.
    5. Ruite Guo & Hwiyoung Lee & Vic Patrangenaru, 2023. "Test for Homogeneity of Random Objects on Manifolds with Applications to Biological Shape Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1178-1204, August.
    6. Stephan Huckemann, 2012. "On the meaning of mean shape: manifold stability, locus and the two sample test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1227-1259, December.
    7. H. Fotouhi & M. Golalizadeh, 2015. "Highly resistant gradient descent algorithm for computing intrinsic mean shape on similarity shape spaces," Statistical Papers, Springer, vol. 56(2), pages 391-410, May.
    8. Vic Patrangenaru & Mingfei Qiu & Marius Buibas, 2014. "Two Sample Tests for Mean 3D Projective Shapes from Digital Camera Images," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 485-506, June.
    9. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    10. Osborne, Daniel & Patrangenaru, Vic & Ellingson, Leif & Groisser, David & Schwartzman, Armin, 2013. "Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and Diffusion Tensor Image analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 163-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:178:y:2020:i:c:s0047259x19301484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.