IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i3d10.1007_s00362-019-01138-3.html
   My bibliography  Save this article

Consistent validation of gray-level thresholding image segmentation algorithms based on machine learning classifiers

Author

Listed:
  • Luca Frigau

    (University of Cagliari)

  • Claudio Conversano

    (University of Cagliari)

  • Francesco Mola

    (University of Cagliari)

Abstract

We propose a Machine Learning approach for Image Validation (MaLIV) to rank the performances of two or more outputs obtained from different gray-level thresholding image segmentation algorithms. MaLIV utilizes machine learning classifiers to rank automatically the outputs of different segmentation algorithms accounting for both the computational complexity of the validation experiment and for the robustness of its results. The proposed method resorts to subsampling to find Fisher consistent estimates of validity measures obtained from a sample of pixels of extremely-reduced size. To this purpose, subsampling is combined with three alternative approaches: learning curves, asymptotic regression and convergence in probability. Results of experiments involving the validation of five images segmented through thirteen different algorithms are presented.

Suggested Citation

  • Luca Frigau & Claudio Conversano & Francesco Mola, 2021. "Consistent validation of gray-level thresholding image segmentation algorithms based on machine learning classifiers," Statistical Papers, Springer, vol. 62(3), pages 1363-1386, June.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01138-3
    DOI: 10.1007/s00362-019-01138-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-019-01138-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-019-01138-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Patrangenaru & Robert Paige & K. David Yao & Mingfei Qiu & David Lester, 2016. "Projective shape analysis of contours and finite 3D configurations from digital camera images," Statistical Papers, Springer, vol. 57(4), pages 1017-1040, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruite Guo & Hwiyoung Lee & Vic Patrangenaru, 2023. "Test for Homogeneity of Random Objects on Manifolds with Applications to Biological Shape Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1178-1204, August.
    2. Bhattacharya, Rabi & Oliver, Rachel, 2020. "Superiority of Bayes estimators over the MLE in high dimensional multinomial models and its implication for nonparametric Bayes theory," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    3. Vic Patrangenaru & Peter Bubenik & Robert L. Paige & Daniel Osborne, 2019. "Challenges in Topological Object Data Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 244-271, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01138-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.