IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v67y1998i2p227-243.html
   My bibliography  Save this article

Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions

Author

Listed:
  • Hendriks, Harrie
  • Landsman, Zinoviy

Abstract

In a previous investigation we studied some asymptotic properties of the sample mean location on submanifolds of Euclidean space. The sample mean location generalizes least squares statistics to smooth compact submanifolds of Euclidean space. In this paper these properties are put into use. Tests for hypotheses about mean location are constructed and confidence regions for mean location are indicated. We study the asymptotic distribution of the test statistic. The problem of comparing mean locations for two samples is analyzed. Special attention is paid to observations on Stiefel manifolds including the orthogonal groupO(p) and spheresSk-1, and special orthogonal groupsSO(p). The results also are illustrated with our experience with simulations.

Suggested Citation

  • Hendriks, Harrie & Landsman, Zinoviy, 1998. "Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 227-243, November.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:227-243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91776-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendriks, Harrie & Landsman, Zinoviy & Ruymgaart, Frits, 1996. "Asymptotic Behavior of Sample Mean Direction for Spheres," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 141-152, November.
    2. Chikuse, Yasuko, 1990. "The matrix angular central Gaussian distribution," Journal of Multivariate Analysis, Elsevier, vol. 33(2), pages 265-274, May.
    3. Mardia, K. V. & Khatri, C. G., 1977. "Uniform distribution on a Stiefel manifold," Journal of Multivariate Analysis, Elsevier, vol. 7(3), pages 468-473, September.
    4. Hendriks, Harrie & Landsman, Zinoviy, 1996. "Asymptotic behavior of sample mean location for manifolds," Statistics & Probability Letters, Elsevier, vol. 26(2), pages 169-178, February.
    5. D. J. Best & N. I. Fisher, 1979. "Efficient Simulation of the von Mises Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 152-157, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
    2. Wang, Yunfan & Patrangenaru, Vic & Guo, Ruite, 2020. "A Central Limit Theorem for extrinsic antimeans and estimation of Veronese–Whitney means and antimeans on planar Kendall shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    3. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    4. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    5. Ruite Guo & Hwiyoung Lee & Vic Patrangenaru, 2023. "Test for Homogeneity of Random Objects on Manifolds with Applications to Biological Shape Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1178-1204, August.
    6. H. Fotouhi & M. Golalizadeh, 2015. "Highly resistant gradient descent algorithm for computing intrinsic mean shape on similarity shape spaces," Statistical Papers, Springer, vol. 56(2), pages 391-410, May.
    7. Osborne, Daniel & Patrangenaru, Vic & Ellingson, Leif & Groisser, David & Schwartzman, Armin, 2013. "Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and Diffusion Tensor Image analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 163-175.
    8. Stephan Huckemann, 2012. "On the meaning of mean shape: manifold stability, locus and the two sample test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1227-1259, December.
    9. Vic Patrangenaru & Yifang Deng, 2021. "Extrinsic Regression and Anti-Regression on Projective Shape Manifolds," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 629-646, June.
    10. Vic Patrangenaru & Mingfei Qiu & Marius Buibas, 2014. "Two Sample Tests for Mean 3D Projective Shapes from Digital Camera Images," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 485-506, June.
    11. Benoit Ahanda & Daniel E. Osborne & Leif Ellingson, 2022. "Robustness of lognormal confidence regions for means of symmetric positive definite matrices when applied to mixtures of lognormal distributions," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 281-303, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanika, & Kumar, Somesh & SenGupta, Ashis, 2015. "A unified approach to decision-theoretic properties of the MLEs for the mean directions of several Langevin distributions," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 160-172.
    2. Stephan Huckemann, 2012. "On the meaning of mean shape: manifold stability, locus and the two sample test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1227-1259, December.
    3. Jupp, P. E., 2001. "Modifications of the Rayleigh and Bingham Tests for Uniformity of Directions," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 1-20, April.
    4. Cao, Meng & Sharma, Mukul M., 2023. "Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems," Energy, Elsevier, vol. 282(C).
    5. Gary Koop & Simon M. Potter & Rodney W. Strachan, 2008. "Re-Examining the Consumption-Wealth Relationship: The Role of Model Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 341-367, March.
    6. Justyna Wr'oblewska & {L}ukasz Kwiatkowski, 2024. "Identification of structural shocks in Bayesian VEC models with two-state Markov-switching heteroskedasticity," Papers 2406.03053, arXiv.org, revised Jun 2024.
    7. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    8. Gary Koop & Roberto León-González & Rodney W. Strachan, 2010. "Efficient Posterior Simulation for Cointegrated Models with Priors on the Cointegration Space," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 224-242, April.
    9. Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2008. "Bayesian inference in a cointegrating panel data model," Advances in Econometrics, in: Bayesian Econometrics, pages 433-469, Emerald Group Publishing Limited.
    10. Ciobotaru, Corina & Mazza, Christian, 2022. "Consistency and asymptotic normality of M-estimates of scatter on Grassmann manifolds," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. Murasawa Yasutomo, 2022. "Bayesian multivariate Beveridge–Nelson decomposition of I(1) and I(2) series with cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(3), pages 387-415, June.
    12. Toru Kitagawa & Jeff Rowley, 2022. "von Mises-Fisher distributions and their statistical divergence," Papers 2202.05192, arXiv.org, revised Nov 2022.
    13. Sabelfeld Karl K., 2017. "Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems," Monte Carlo Methods and Applications, De Gruyter, vol. 23(3), pages 189-212, September.
    14. repec:onb:oenbwp:y::i:164:b:1 is not listed on IDEAS
    15. Jacek Osiewalski & Justyna Wróblewska & Kamil Makieła, 2020. "Bayesian comparison of production function-based and time-series GDP models," Empirical Economics, Springer, vol. 58(3), pages 1355-1380, March.
    16. Chikuse, Yasuko, 1998. "Density Estimation on the Stiefel Manifold," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 188-206, August.
    17. Kanti Mardia, 2010. "Bayesian analysis for bivariate von Mises distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 515-528.
    18. Chikuse, Yasuko, 2003. "Concentrated matrix Langevin distributions," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 375-394, May.
    19. Justyna Wr'oblewska, 2020. "Bayesian analysis of seasonally cointegrated VAR model," Papers 2012.14820, arXiv.org, revised Apr 2021.
    20. Chikuse, Y. & Jupp, P. E., 2004. "A test of uniformity on shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 163-176, January.
    21. Devroye, Luc, 2002. "Simulating Bessel random variables," Statistics & Probability Letters, Elsevier, vol. 57(3), pages 249-257, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:227-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.