IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v81y2019i1d10.1007_s13171-018-0131-0.html
   My bibliography  Save this article

Robust Comparison of Kernel Densities on Spherical Domains

Author

Listed:
  • Zhengwu Zhang

    (University of Rochester)

  • Eric Klassen

    (Florida State University)

  • Anuj Srivastava

    (Florida State University)

Abstract

While spherical data arises in many contexts, including in directional statistics, the current tools for density estimation and population comparison on spheres are quite limited. Popular approaches for comparing populations (on Euclidean domains) mostly involve a two-step procedure: (1) estimate probability density functions (pdf s) from their respective samples, most commonly using the kernel density estimator, and (2) compare pdf s using a metric such as the 𝕃 2 $\mathbb {L}^{2}$ norm. However, both the estimated pdf s and their differences depend heavily on the chosen kernels, bandwidths, and sample sizes. Here we develop a framework for comparing spherical populations that is robust to these choices. Essentially, we characterize pdf s on spherical domains by quantifying their smoothness. Our framework uses a spectral representation, with densities represented by their coefficients with respect to the eigenfunctions of the Laplacian operator on a sphere. The change in smoothness, akin to using different kernel bandwidths, is controlled by exponential decays in coefficient values. Then we derive a proper distance for comparing pdf coefficients while equalizing smoothness levels, negating influences of sample size and bandwidth. This signifies a fair and meaningful comparisons of populations, despite vastly different sample sizes, and leads to a robust and improved performance. We demonstrate this framework using examples of variables on 𝕊 1 $\mathbb {S}^{1}$ and 𝕊 2 $\mathbb {S}^{2}$ , and evaluate its performance using a number of simulations and real data experiments.

Suggested Citation

  • Zhengwu Zhang & Eric Klassen & Anuj Srivastava, 2019. "Robust Comparison of Kernel Densities on Spherical Domains," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 144-171, February.
  • Handle: RePEc:spr:sankha:v:81:y:2019:i:1:d:10.1007_s13171-018-0131-0
    DOI: 10.1007/s13171-018-0131-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-018-0131-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-018-0131-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marron, J.S. & Schmitz, H.-P., 1992. "Simultaneous Density Estimation of Several Income Distributions," Econometric Theory, Cambridge University Press, vol. 8(4), pages 476-488, December.
    2. Marron, J. S. & Nolan, D., 1988. "Canonical kernels for density estimation," Statistics & Probability Letters, Elsevier, vol. 7(3), pages 195-199, December.
    3. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    2. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    3. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    4. Leone Leonida & Leone Leonida & Daniel Montolio, 2003. "Public Capital, Growth and Convergence in Spain. A Counterfactual Density Estimation Approach," Working Papers 2003/3, Institut d'Economia de Barcelona (IEB).
    5. Jean-David Fermanian & Dominique Guégan, 2021. "Fair learning with bagging," Documents de travail du Centre d'Economie de la Sorbonne 21034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Martin L. Hazelton & Tilman M. Davies, 2022. "Pointwise comparison of two multivariate density functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1791-1810, December.
    7. Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
    8. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    9. Riccardo Massari, 2009. "Is income becoming more polarized Italy? A closer look with a distributional approach," Working Papers 1, Doctoral School of Economics, Sapienza University of Rome.
    10. Giovanni Caggiano & Leone Leonida, 2013. "Multimodality in the distribution of GDP and the absolute convergence hypothesis," Empirical Economics, Springer, vol. 44(3), pages 1203-1215, June.
    11. M. D. Jiménez-Gamero & M. Cousido-Rocha & M. V. Alba-Fernández & F. Jiménez-Jiménez, 2022. "Testing the equality of a large number of populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-21, March.
    12. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    13. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    14. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    15. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    16. Leone Leonida & Antonio Giangreco & Sergio Scicchitano & Marco Biagetti, 2023. "Britain and BrExit: Is the UK more attractive to supervisors? An analysis of the wage premium to supervision across the EU," British Journal of Industrial Relations, London School of Economics, vol. 61(2), pages 291-312, June.
    17. M. M. Salinas-Jimenez, 2003. "Technological change, efficiency gains and capital accumulation in labour productivity growth and convergence: an application to the Spanish regions," Applied Economics, Taylor & Francis Journals, vol. 35(17), pages 1839-1851.
    18. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    19. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    20. C�line Bonnefond & Matthieu Cl�ment, 2012. "An analysis of income polarisation in rural and urban China," Post-Communist Economies, Taylor & Francis Journals, vol. 24(1), pages 15-37, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:81:y:2019:i:1:d:10.1007_s13171-018-0131-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.