IDEAS home Printed from https://ideas.repec.org/a/spr/reecde/v17y2013i2p95-128.html
   My bibliography  Save this article

The Gates Hillman prediction market

Author

Listed:
  • Abraham Othman
  • Tuomas Sandholm

Abstract

The Gates Hillman prediction market (GHPM) was an internet prediction market designed to predict the opening day of the Gates and Hillman Centers, the new computer science complex at Carnegie Mellon University. Unlike a traditional continuous double auction format, the GHPM was mediated by an automated market maker, a central agent responsible for pricing transactions with traders over the possible opening days. The GHPM’s event partition was, at the time, the largest ever elicited in any prediction market by an order of magnitude, and dealing with the market’s size required new advances, including a novel span-based elicitation interface that simplified interactions with the market maker. We use the large set of identity-linked trades generated by the GHPM to examine issues of trader performance and market microstructure, including how the market both reacted to and anticipated official news releases about the building’s opening day. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Abraham Othman & Tuomas Sandholm, 2013. "The Gates Hillman prediction market," Review of Economic Design, Springer;Society for Economic Design, vol. 17(2), pages 95-128, June.
  • Handle: RePEc:spr:reecde:v:17:y:2013:i:2:p:95-128
    DOI: 10.1007/s10058-013-0144-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10058-013-0144-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10058-013-0144-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shipra Agrawal & Erick Delage & Mark Peters & Zizhuo Wang & Yinyu Ye, 2009. "A Unified Framework for Dynamic Pari-Mutuel Information Market Design," Papers 0902.2429, arXiv.org.
    2. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    3. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    4. Forsythe, Robert & Rietz, Thomas A. & Ross, Thomas W., 1999. "Wishes, expectations and actions: a survey on price formation in election stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 83-110, May.
    5. Kenneth Oliven & Thomas A. Rietz, 2004. "Suckers Are Born but Markets Are Made: Individual Rationality, Arbitrage, and Market Efficiency on an Electronic Futures Market," Management Science, INFORMS, vol. 50(3), pages 336-351, March.
    6. Michael Ostrovsky, 2012. "Information Aggregation in Dynamic Markets With Strategic Traders," Econometrica, Econometric Society, vol. 80(6), pages 2595-2647, November.
    7. Ledyard, John & Hanson, Robin & Ishikida, Takashi, 2009. "An experimental test of combinatorial information markets," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 182-189, February.
    8. Wolfers, Justin & Zitzewitz, Eric, 2006. "Five Open Questions About Prediction Markets," CEPR Discussion Papers 5562, C.E.P.R. Discussion Papers.
    9. repec:reg:rpubli:259 is not listed on IDEAS
    10. Robin Hanson, 2003. "Combinatorial Information Market Design," Information Systems Frontiers, Springer, vol. 5(1), pages 107-119, January.
    11. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    12. Forsythe, Robert & Forrest Nelson & George R. Neumann & Jack Wright, 1992. "Anatomy of an Experimental Political Stock Market," American Economic Review, American Economic Association, vol. 82(5), pages 1142-1161, December.
    13. Robin Hanson, 2007. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation," Journal of Prediction Markets, University of Buckingham Press, vol. 1(1), pages 3-15, February.
    14. Ali, Mukhtar M, 1977. "Probability and Utility Estimates for Racetrack Bettors," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 803-815, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishnamurthy Iyer & Ramesh Johari & Ciamac C. Moallemi, 2014. "Information Aggregation and Allocative Efficiency in Smooth Markets," Management Science, INFORMS, vol. 60(10), pages 2509-2524, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahrash Dianat & Christoph Siemroth, 2021. "Improving decisions with market information: an experiment on corporate prediction markets," Experimental Economics, Springer;Economic Science Association, vol. 24(1), pages 143-176, March.
    2. Lambert, Nicolas S. & Langford, John & Wortman Vaughan, Jennifer & Chen, Yiling & Reeves, Daniel M. & Shoham, Yoav & Pennock, David M., 2015. "An axiomatic characterization of wagering mechanisms," Journal of Economic Theory, Elsevier, vol. 156(C), pages 389-416.
    3. Lian Jian & Rahul Sami, 2012. "Aggregation and Manipulation in Prediction Markets: Effects of Trading Mechanism and Information Distribution," Management Science, INFORMS, vol. 58(1), pages 123-140, January.
    4. Siemroth, Christoph, 2014. "Why prediction markets work : The role of information acquisition and endogenous weighting," Working Papers 14-02, University of Mannheim, Department of Economics.
    5. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    6. Galanis, S. & Ioannou, C. & Kotronis, S., 2019. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," Working Papers 20/05, Department of Economics, City University London.
    7. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    8. Patrick Buckley & Fergal O’Brien, 0. "The effect of malicious manipulations on prediction market accuracy," Information Systems Frontiers, Springer, vol. 0, pages 1-13.
    9. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    10. Joyce E. Berg & George R. Neumann & Thomas A. Rietz, 2009. "Searching for Google's Value: Using Prediction Markets to Forecast Market Capitalization Prior to an Initial Public Offering," Management Science, INFORMS, vol. 55(3), pages 348-361, March.
    11. Patrick Buckley & Fergal O’Brien, 2017. "The effect of malicious manipulations on prediction market accuracy," Information Systems Frontiers, Springer, vol. 19(3), pages 611-623, June.
    12. Florian Teschner & David Rothschild & Henner Gimpel, 2017. "Manipulation in Conditional Decision Markets," Group Decision and Negotiation, Springer, vol. 26(5), pages 953-971, September.
    13. Edoardo Gaffeo, 2013. "Using information markets in grantmaking. An assessment of the issues involved and an application to Italian banking foundations," DEM Discussion Papers 2013/08, Department of Economics and Management.
    14. Joyce E. Berg & John Geweke & Thomas A. Rietz, 2010. "Memoirs of an indifferent trader: Estimating forecast distributions from prediction markets," Quantitative Economics, Econometric Society, vol. 1(1), pages 163-186, July.
    15. Berg, Joyce E. & Nelson, Forrest D. & Rietz, Thomas A., 2008. "Prediction market accuracy in the long run," International Journal of Forecasting, Elsevier, vol. 24(2), pages 285-300.
    16. Werner Antweiler, 2012. "Long-Term Prediction Markets," Journal of Prediction Markets, University of Buckingham Press, vol. 6(3), pages 43-61.
    17. Forsell, Eskil & Viganola, Domenico & Pfeiffer, Thomas & Almenberg, Johan & Wilson, Brad & Chen, Yiling & Nosek, Brian A. & Johannesson, Magnus & Dreber, Anna, 2019. "Predicting replication outcomes in the Many Labs 2 study," Journal of Economic Psychology, Elsevier, vol. 75(PA).
    18. Riekhof, Hans-Christian & Riekhof, Marie-Catherine & Brinkhoff, Stefan, 2012. "Predictive Markets: Ein vielversprechender Weg zur Verbesserung der Prognosequalität im Unternehmen?," PFH Forschungspapiere/Research Papers 2012/07, PFH Private University of Applied Sciences, Göttingen.
    19. Bin-Tzong Chie & Chih-Hwa Yang, 2021. "Efficiency of the Experimental Prediction Market: Public Information, Belief Evolution, and Personality Traits," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(4), pages 1-3.
    20. Florian Teschner & Henner Gimpel, 2018. "Crowd Labor Markets as Platform for Group Decision and Negotiation Research: A Comparison to Laboratory Experiments," Group Decision and Negotiation, Springer, vol. 27(2), pages 197-214, April.

    More about this item

    Keywords

    Prediction markets; Automated market making; Case studies; Market design; D4; D7;
    All these keywords.

    JEL classification:

    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D7 - Microeconomics - - Analysis of Collective Decision-Making

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:reecde:v:17:y:2013:i:2:p:95-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.