IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v93y2019i1d10.1007_s11134-019-09606-1.html
   My bibliography  Save this article

Asymptotic independence of regenerative processes with a special dependence structure

Author

Listed:
  • Royi Jacobovic

    (The Hebrew University of Jerusalem)

  • Offer Kella

    (The Hebrew University of Jerusalem)

Abstract

We identify some conditions under which regenerative processes with a certain dependence structure among them are asymptotically independent. The result is applied to various models, in particular independent Lévy processes with dependent secondary jumps at the origin (for example, workloads of parallel M/G/1 queues with server vacations), the asymptotic performance of systems with multiple correlated sources that generate real-time status updates measured by the limiting probability of an updated system, and asymptotic results for clearing processes with dependent arrivals of clearings. Finally, the asymptotic distribution of the classic Jackson network is discussed as yet another example.

Suggested Citation

  • Royi Jacobovic & Offer Kella, 2019. "Asymptotic independence of regenerative processes with a special dependence structure," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 139-152, October.
  • Handle: RePEc:spr:queues:v:93:y:2019:i:1:d:10.1007_s11134-019-09606-1
    DOI: 10.1007/s11134-019-09606-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-019-09606-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-019-09606-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ward Whitt, 1981. "The Stationary Distribution of a Stochastic Clearing Process," Operations Research, INFORMS, vol. 29(2), pages 294-308, April.
    2. Shaler Stidham, 1977. "Cost Models for Stochastic Clearing Systems," Operations Research, INFORMS, vol. 25(1), pages 100-127, February.
    3. Serfozo, Richard & Stidham, Shaler, 1978. "Semi-stationary clearing processes," Stochastic Processes and their Applications, Elsevier, vol. 6(2), pages 165-178, January.
    4. Thorisson, Hermann, 1992. "Construction of a stationary regenerative process," Stochastic Processes and their Applications, Elsevier, vol. 42(2), pages 237-253, September.
    5. Stidham, Shaler, 1974. "Stochastic clearing systems," Stochastic Processes and their Applications, Elsevier, vol. 2(1), pages 85-113, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karamzadeh, M. & Soltani, A.R. & Mardani-Fard, H.A., 2020. "On a class of spatial renewal processes: Renewal processes synchronization probabilities," Statistics & Probability Letters, Elsevier, vol. 158(C).
    2. Jacobovic, Royi & Kella, Offer, 2020. "Minimizing a stochastic convex function subject to stochastic constraints and some applications," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 7004-7018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
    2. Oded Berman & Mahmut Parlar & David Perry & M. J. M. Posner, 2005. "Production/Clearing Models Under Continuous and Sporadic Reviews," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 203-224, June.
    3. Artalejo, J. R., 2000. "G-networks: A versatile approach for work removal in queueing networks," European Journal of Operational Research, Elsevier, vol. 126(2), pages 233-249, October.
    4. Qi‐Ming He & James H. Bookbinder & Qishu Cai, 2020. "Optimal policies for stochastic clearing systems with time‐dependent delay penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 487-502, October.
    5. Jacobovic, Royi & Kella, Offer, 2020. "Minimizing a stochastic convex function subject to stochastic constraints and some applications," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 7004-7018.
    6. Wang, Jinting & Liu, Bin & Li, Jianghua, 2008. "Transient analysis of an M/G/1 retrial queue subject to disasters and server failures," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1118-1132, September.
    7. Bu, Qihui & Sun, Yun & Chai, Xudong & Liu, Liwei, 2020. "Strategic behavior and social optimization in a clearing queueing system with N-policy and stochastic restarting scheme," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    8. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    9. Germs, Remco & Van Foreest, Nicky D. & Kilic, Onur A., 2016. "Optimal policies for production-clearing systems under continuous-review," European Journal of Operational Research, Elsevier, vol. 255(3), pages 747-757.
    10. David Perry & Wolfgang Stadje & Shelemyahu Zacks, 2005. "Sporadic and Continuous Clearing Policies for a Production/Inventory System Under an M / G Demand Process," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 354-368, May.
    11. Perry, David & Stadje, Wolfgang, 2000. "Risk analysis for a stochastic cash management model with two types of customers," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 25-36, February.
    12. Barron, Yonit, 2016. "Clearing control policies for MAP inventory process with lost sales," European Journal of Operational Research, Elsevier, vol. 251(2), pages 495-508.
    13. Lagodimos, A.G. & Christou, I.T. & Skouri, K., 2012. "Computing globally optimal (s,S,T) inventory policies," Omega, Elsevier, vol. 40(5), pages 660-671.
    14. Canbolat, Pelin G., 2020. "Bounded rationality in clearing service systems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 614-626.
    15. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    16. Hongtao Zhang, 1998. "A Note on the Convexity of Service-Level Measures of the (r, q) System," Management Science, INFORMS, vol. 44(3), pages 431-432, March.
    17. Tunay I. Tunca & Weiming Zhu, 2018. "Buyer Intermediation in Supplier Finance," Management Science, INFORMS, vol. 64(12), pages 5631-5650, December.
    18. Charles J. Corbett, 2001. "Stochastic Inventory Systems in a Supply Chain with Asymmetric Information: Cycle Stocks, Safety Stocks, and Consignment Stock," Operations Research, INFORMS, vol. 49(4), pages 487-500, August.
    19. Izzet Sahin & Diptendu Sinha, 1987. "Renewal approximation to optimal order quantity for a class of continuous‐review inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 655-667, October.
    20. Thorisson, Hermann, 1995. "On time- and cycle-stationarity," Stochastic Processes and their Applications, Elsevier, vol. 55(2), pages 183-209, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:93:y:2019:i:1:d:10.1007_s11134-019-09606-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.