IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v108y2024i1d10.1007_s11134-024-09920-3.html
   My bibliography  Save this article

Capacity allocation in a two-channel service system from a social planner’s perspective

Author

Listed:
  • Feray Tunçalp

    (UCL School of Management)

  • Lerzan Örmeci

    (Koç University)

  • Evrim D. Güneş

    (Koç University)

Abstract

This paper considers a capacity allocation problem in a two-channel service system. Customers can receive service from either a single-server queueing system, which serves the customers waiting in line one by one, or a clearing service system, which serves a fixed number of customers simultaneously according to its capacity. Customers who join the queueing system should wait till they receive service. In contrast, customers who join the clearing system face the risk of service denial when there are more customers than the clearing system’s capacity. The social planner aims to minimize the total expected cost of all customers by determining the capacities and the arrival rates for the two channels. There are two settings: an unobservable setting where only the expected waiting time information is available and an observable setting where real-time information about the exact workload of the queueing system is known. We also consider the same system under the same settings with strategic customers who choose one of the two channels strategically to minimize their costs. The planner still has the same objective but can now decide only on the capacity allocation. Comparing the performance of the resulting systems allows us to understand the value of coordination and information. Extensions of these systems that serve two customer types are also explored.

Suggested Citation

  • Feray Tunçalp & Lerzan Örmeci & Evrim D. Güneş, 2024. "Capacity allocation in a two-channel service system from a social planner’s perspective," Queueing Systems: Theory and Applications, Springer, vol. 108(1), pages 185-213, October.
  • Handle: RePEc:spr:queues:v:108:y:2024:i:1:d:10.1007_s11134-024-09920-3
    DOI: 10.1007/s11134-024-09920-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-024-09920-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-024-09920-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyriakidis, E. G., 1994. "Stationary probabilities for a simple immigration-birth-death process under the influence of total catastrophes," Statistics & Probability Letters, Elsevier, vol. 20(3), pages 239-240, June.
    2. Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
    3. Tunçalp, Feray & Güneş, Evrim D. & Örmeci, E. Lerzan, 2024. "Modeling strategic walk-in patients in appointment systems: Equilibrium behavior and capacity allocation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 587-601.
    4. Alexei Alexandrov & Martin A. Lariviere, 2012. "Are Reservations Recommended?," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 218-230, April.
    5. Athanasia Manou & Antonis Economou & Fikri Karaesmen, 2014. "Strategic Customers in a Transportation Station: When Is It Optimal to Wait?," Operations Research, INFORMS, vol. 62(4), pages 910-925, August.
    6. Serfozo, Richard & Stidham, Shaler, 1978. "Semi-stationary clearing processes," Stochastic Processes and their Applications, Elsevier, vol. 6(2), pages 165-178, January.
    7. Stidham, Shaler, 1974. "Stochastic clearing systems," Stochastic Processes and their Applications, Elsevier, vol. 2(1), pages 85-113, January.
    8. Economou, Antonis, 2003. "On the control of a compound immigration process through total catastrophes," European Journal of Operational Research, Elsevier, vol. 147(3), pages 522-529, June.
    9. Hanif D. Sherali, 1984. "A Multiple Leader Stackelberg Model and Analysis," Operations Research, INFORMS, vol. 32(2), pages 390-404, April.
    10. Peter W. Glynn, 2022. "Queueing theory: past, present, and future," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 169-171, April.
    11. Canbolat, Pelin G., 2020. "Bounded rationality in clearing service systems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 614-626.
    12. Economou, Antonis & Fakinos, Demetrios, 2003. "A continuous-time Markov chain under the influence of a regulating point process and applications in stochastic models with catastrophes," European Journal of Operational Research, Elsevier, vol. 149(3), pages 625-640, September.
    13. Bountali, Olga & Economou, Antonis, 2017. "Equilibrium joining strategies in batch service queueing systems," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1142-1151.
    14. Olga Bountali & Antonis Economou, 2019. "Equilibrium threshold joining strategies in partially observable batch service queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 231-253, June.
    15. Qi‐Ming He & James H. Bookbinder & Qishu Cai, 2020. "Optimal policies for stochastic clearing systems with time‐dependent delay penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 487-502, October.
    16. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    17. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    18. Olga Boudali & Antonis Economou, 2013. "The effect of catastrophes on the strategic customer behavior in queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 571-587, October.
    19. Boudali, Olga & Economou, Antonis, 2012. "Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes," European Journal of Operational Research, Elsevier, vol. 218(3), pages 708-715.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    2. Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
    3. Olga Bountali & Antonis Economou, 2019. "Equilibrium threshold joining strategies in partially observable batch service queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 231-253, June.
    4. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.
    5. Zaiming Liu & Can Cao & Shan Gao, 2019. "Equilibrium Joining Strategies in the Geo / Geo K /1 Queueing System," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
    6. Ayane Nakamura & Tuan Phung-Duc, 2023. "Equilibrium Analysis for Batch Service Queueing Systems with Strategic Choice of Batch Size," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    7. Bu, Qihui & Sun, Yun & Chai, Xudong & Liu, Liwei, 2020. "Strategic behavior and social optimization in a clearing queueing system with N-policy and stochastic restarting scheme," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    8. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. Bountali, Olga & Economou, Antonis, 2017. "Equilibrium joining strategies in batch service queueing systems," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1142-1151.
    10. P. Vijaya Laxmi & E. Girija Bhavani, 2024. "Strategic behavior of customers in a second optional service queue with service interruptions," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 762-784, June.
    11. Tunçalp, Feray & Güneş, Evrim D. & Örmeci, E. Lerzan, 2024. "Modeling strategic walk-in patients in appointment systems: Equilibrium behavior and capacity allocation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 587-601.
    12. David Barbato & Alberto Cesaro & Bernardo D’Auria, 2024. "Equilibrium Strategies for Overtaking-Free Queueing Networks under Partial Information," Mathematics, MDPI, vol. 12(19), pages 1-17, September.
    13. Nitin Kumar & U. C. Gupta, 2020. "Analysis of batch Bernoulli process subject to discrete-time renewal generated binomial catastrophes," Annals of Operations Research, Springer, vol. 287(1), pages 257-283, April.
    14. Czerny, Achim I. & Guo, Pengfei & Hassin, Refael, 2022. "Shall firms withhold exact waiting time information from their customers? A transport example," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 128-142.
    15. Wang, Jinting & Zhang, Xuelu & Huang, Ping, 2017. "Strategic behavior and social optimization in a constant retrial queue with the N-policy," European Journal of Operational Research, Elsevier, vol. 256(3), pages 841-849.
    16. Canbolat, Pelin G., 2020. "Bounded rationality in clearing service systems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 614-626.
    17. Olga Boudali & Antonis Economou, 2013. "The effect of catastrophes on the strategic customer behavior in queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 571-587, October.
    18. Hassin, Refael & Haviv, Moshe & Oz, Binyamin, 2023. "Strategic behavior in queues with arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 217-224.
    19. Dimitrakopoulos, Y. & Burnetas, A.N., 2016. "Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control," European Journal of Operational Research, Elsevier, vol. 252(2), pages 477-486.
    20. Nitin Kumar & Umesh Chandra Gupta, 2022. "Markovian Arrival Process Subject to Renewal Generated Binomial Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2287-2312, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:108:y:2024:i:1:d:10.1007_s11134-024-09920-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.