IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v26y2000i1p25-36.html
   My bibliography  Save this article

Risk analysis for a stochastic cash management model with two types of customers

Author

Listed:
  • Perry, David
  • Stadje, Wolfgang

Abstract

No abstract is available for this item.

Suggested Citation

  • Perry, David & Stadje, Wolfgang, 2000. "Risk analysis for a stochastic cash management model with two types of customers," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 25-36, February.
  • Handle: RePEc:eee:insuma:v:26:y:2000:i:1:p:25-36
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(99)00037-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Michael Harrison & Michael I. Taksar, 1983. "Instantaneous Control of Brownian Motion," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 439-453, August.
    2. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    3. Paul H. Zipkin, 1992. "The Relationship Between Risk and Maturity In A Stochastic Setting," Mathematical Finance, Wiley Blackwell, vol. 2(1), pages 33-46, January.
    4. J. Michael Harrison & Thomas M. Sellke & Allison J. Taylor, 1983. "Impulse Control of Brownian Motion," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 454-466, August.
    5. Shaler Stidham, 1977. "Cost Models for Stochastic Clearing Systems," Operations Research, INFORMS, vol. 25(1), pages 100-127, February.
    6. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    7. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    8. Shaler Stidham, 1986. "Clearing Systems and ( s , S ) Inventory Systems with Nonlinear Costs and Positive Lead Times," Operations Research, INFORMS, vol. 34(2), pages 276-280, April.
    9. Serfozo, Richard & Stidham, Shaler, 1978. "Semi-stationary clearing processes," Stochastic Processes and their Applications, Elsevier, vol. 6(2), pages 165-178, January.
    10. Radner, Roy, 1998. "Profit maximization with bankruptcy and variable scale," Journal of Economic Dynamics and Control, Elsevier, vol. 22(6), pages 849-867, June.
    11. Paul Zipkin, 1992. "The Structure of Structured Bond Portfolio Models," Operations Research, INFORMS, vol. 40(1-supplem), pages 157-169, February.
    12. Milne, Alistair & Robertson, Donald, 1996. "Firm behaviour under the threat of liquidation," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1427-1449, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Schepper, Ann & Goovaerts, Marc & Dhaene, Jan & Kaas, Rob & Vyncke, David, 2002. "Bounds for present value functions with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 87-103, August.
    2. Luis Alvarez & Teppo Rakkolainen, 2009. "Optimal payout policy in presence of downside risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 27-58, March.
    3. Luis H. R. Alvarez & Teppo A. Rakkolainen, 2007. "Optimal Dividend Control in Presence of Downside Risk," Discussion Papers 14, Aboa Centre for Economics.
    4. Frostig, Esther, 2005. "The expected time to ruin in a risk process with constant barrier via martingales," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 216-228, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perry, David & Berg, M. & Posner, M. J. M., 2001. "Stochastic models for broker inventory in dealership markets with a cash management interpretation," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 23-34, August.
    2. Yao, Jing-Shing & Chen, Miao-Sheng & Lu, Huei-Fu, 2006. "A fuzzy stochastic single-period model for cash management," European Journal of Operational Research, Elsevier, vol. 170(1), pages 72-90, April.
    3. Opler, Tim & Pinkowitz, Lee & Stulz, Rene & Williamson, Rohan, 1999. "The determinants and implications of corporate cash holdings," Journal of Financial Economics, Elsevier, vol. 52(1), pages 3-46, April.
    4. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    5. Anatoliy Swishchuk, 2021. "Merton Investment Problems in Finance and Insurance for the Hawkes-based Models," Papers 2104.02694, arXiv.org, revised May 2021.
    6. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    7. Kun Wu & Weixing Wu, 2016. "Optimal Controls for a Large Insurance Under a CEV Model: Based on the Legendre Transform-Dual Method," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 167-178, December.
    8. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    9. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    10. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani & Chao Zhou, 2019. "Gambling for resurrection and the heat equation on a triangle," Working Papers hal-02405853, HAL.
    11. Irgens, Christian & Paulsen, Jostein, 2004. "Optimal control of risk exposure, reinsurance and investments for insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 21-51, August.
    12. Yiannis Kamarianakis & Anastasios Xepapadeas, 2006. "Stochastic impulse control with discounted and ergodic optimization criteria: A comparative study for the control of risky holdings," Working Papers 0709, University of Crete, Department of Economics.
    13. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani & Chao Zhou, 2021. "Gambling for resurrection and the heat equation on a triangle," Post-Print hal-02405853, HAL.
    14. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    15. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2020. "A Perturbation Approach to Optimal Investment, Liability Ratio, and Dividend Strategies," Papers 2012.06703, arXiv.org, revised May 2021.
    16. Oded Berman & Mahmut Parlar & David Perry & M. J. M. Posner, 2005. "Production/Clearing Models Under Continuous and Sporadic Reviews," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 203-224, June.
    17. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity‐Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671, October.
    18. Chen, Mi & Peng, Xiaofan & Guo, Junyi, 2013. "Optimal dividend problem with a nonlinear regular-singular stochastic control," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 448-456.
    19. Hainaut, Donatien, 2017. "Contagion modeling between the financial and insurance markets with time changed processes," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 63-77.
    20. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:26:y:2000:i:1:p:25-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.