IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v100y2022i3d10.1007_s11134-022-09816-0.html
   My bibliography  Save this article

Learning and data-driven optimization in queues with strategic customers

Author

Listed:
  • Apostolos Burnetas

    (National and Kapodistrian University of Athens)

Abstract

No abstract is available for this item.

Suggested Citation

  • Apostolos Burnetas, 2022. "Learning and data-driven optimization in queues with strategic customers," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 517-519, April.
  • Handle: RePEc:spr:queues:v:100:y:2022:i:3:d:10.1007_s11134-022-09816-0
    DOI: 10.1007/s11134-022-09816-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-022-09816-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-022-09816-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Chen & John J. Hasenbein, 2020. "Knowledge, congestion, and economics: Parameter uncertainty in Naor’s model," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 83-99, October.
    2. Nahum Shimkin & Adam Shwartz, 1996. "Asymptotically Efficient Adaptive Strategies in Repeated Games Part II. Asymptotic Optimality," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 487-512, May.
    3. Eyal Even-Dar & Sham. M. Kakade & Yishay Mansour, 2009. "Online Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 726-736, August.
    4. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    5. Moshe Haviv & Ramandeep S. Randhawa, 2014. "Pricing in Queues Without Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 401-411, July.
    6. Aurélien Garivier & Pierre Ménard & Gilles Stoltz, 2019. "Explore First, Exploit Next: The True Shape of Regret in Bandit Problems," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 377-399, May.
    7. Apostolos N. Burnetas & Michael N. Katehakis, 1997. "Optimal Adaptive Policies for Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 222-255, February.
    8. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    9. Apostolos Burnetas & Antonis Economou & George Vasiliadis, 2017. "Strategic customer behavior in a queueing system with delayed observations," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 389-418, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassin, Refael & Haviv, Moshe & Oz, Binyamin, 2023. "Strategic behavior in queues with arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 217-224.
    2. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    3. Inchi Hu & Chi-Wen Jevons Lee, 2003. "Bayesian Adaptive Stochastic Process Termination," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 361-381, May.
    4. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    5. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    6. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    7. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    8. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    9. Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
    10. Adriana Tiron-Tudor & Delia Deliu, 2021. "Big Data’s Disruptive Effect on Job Profiles: Management Accountants’ Case Study," JRFM, MDPI, vol. 14(8), pages 1-26, August.
    11. Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised May 2024.
    12. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    13. Kartikeya Puranam & Michael Katehakis, 2014. "On optimal bidding and inventory control in sequential procurement auctions: the multi period case," Annals of Operations Research, Springer, vol. 217(1), pages 447-462, June.
    14. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    15. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    16. Dmitry B. Rokhlin, 2021. "Relative utility bounds for empirically optimal portfolios," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 437-462, June.
    17. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    18. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    19. Shiau Hong Lim & Huan Xu & Shie Mannor, 2016. "Reinforcement Learning in Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1325-1353, November.
    20. Christian Mandl & Selvaprabu Nadarajah & Stefan Minner & Srinagesh Gavirneni, 2022. "Data‐driven storage operations: Cross‐commodity backtest and structured policies," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2438-2456, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:100:y:2022:i:3:d:10.1007_s11134-022-09816-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.