IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v92y2019i3d10.1007_s11134-019-09618-x.html
   My bibliography  Save this article

Optimal pricing for tandem queues with finite buffers

Author

Listed:
  • Xinchang Wang

    (Mississippi State University)

  • Sigrún Andradóttir

    (Georgia Institute of Technology)

  • Hayriye Ayhan

    (Georgia Institute of Technology)

Abstract

We consider optimal pricing for a two-station tandem queueing system with finite buffers, communication blocking, and price-sensitive customers whose arrivals form a homogeneous Poisson process. The service provider quotes prices to incoming customers using either a static or dynamic pricing scheme. There may also be a holding cost for each customer in the system. The objective is to maximize either the discounted profit over an infinite planning horizon or the long-run average profit of the provider. We show that there exists an optimal dynamic policy that exhibits a monotone structure, in which the quoted price is non-decreasing in the queue length at either station and is non-increasing if a customer moves from station 1 to 2, for both the discounted and long-run average problems under certain conditions on the holding costs. We then focus on the long-run average problem and show that the optimal static policy performs as well as the optimal dynamic policy when the buffer size at station 1 becomes large, there are no holding costs, and the arrival rate is either small or large. We learn from numerical results that for systems with small arrival rates and no holding cost, the optimal static policy produces a gain quite close to the optimal gain even when the buffer at station 1 is small. On the other hand, for systems with arrival rates that are not small, there are cases where the optimal dynamic policy performs much better than the optimal static policy.

Suggested Citation

  • Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan, 2019. "Optimal pricing for tandem queues with finite buffers," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 323-396, August.
  • Handle: RePEc:spr:queues:v:92:y:2019:i:3:d:10.1007_s11134-019-09618-x
    DOI: 10.1007/s11134-019-09618-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-019-09618-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-019-09618-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantinos Maglaras, 2006. "Revenue Management for a Multiclass Single-Server Queue via a Fluid Model Analysis," Operations Research, INFORMS, vol. 54(5), pages 914-932, October.
    2. Aktaran-KalaycI, Tûba & Ayhan, Hayriye, 2009. "Sensitivity of optimal prices to system parameters in a steady-state service facility," European Journal of Operational Research, Elsevier, vol. 193(1), pages 120-128, February.
    3. David W. Low, 1974. "Optimal Dynamic Pricing Policies for an M / M / s Queue," Operations Research, INFORMS, vol. 22(3), pages 545-561, June.
    4. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    5. Maoui, Idriss & Ayhan, Hayriye & Foley, Robert D., 2009. "Optimal static pricing for a service facility with holding costs," European Journal of Operational Research, Elsevier, vol. 197(3), pages 912-923, September.
    6. Ghoneim, Hussein A. & Stidham, Shaler, 1985. "Control of arrivals to two queues in series," European Journal of Operational Research, Elsevier, vol. 21(3), pages 399-409, September.
    7. William Millhiser & Apostolos Burnetas, 2013. "Optimal admission control in series production systems with blocking," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1035-1047.
    8. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    9. Moshe Haviv & Ramandeep S. Randhawa, 2014. "Pricing in Queues Without Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 401-411, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myron Benioudakis & Apostolos Burnetas & George Ioannou, 2022. "Single versus dynamic lead-time quotations in make-to-order systems with delay-averse customers," Annals of Operations Research, Springer, vol. 318(1), pages 33-65, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Besbes & Costis Maglaras, 2009. "Revenue Optimization for a Make-to-Order Queue in an Uncertain Market Environment," Operations Research, INFORMS, vol. 57(6), pages 1438-1450, December.
    2. Vibhanshu Abhishek & Mustafa Dogan & Alexandre Jacquillat, 2021. "Strategic Timing and Dynamic Pricing for Online Resource Allocation," Management Science, INFORMS, vol. 67(8), pages 4880-4907, August.
    3. Hassin, Refael & Haviv, Moshe & Oz, Binyamin, 2023. "Strategic behavior in queues with arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 217-224.
    4. Baric{s} Ata & Shiri Shneorson, 2006. "Dynamic Control of an M/M/1 Service System with Adjustable Arrival and Service Rates," Management Science, INFORMS, vol. 52(11), pages 1778-1791, November.
    5. Jian Cao & Yongjiang Guo & Zhongxin Hu, 2023. "The Effect of Loss Preference on Queueing with Information Disclosure Policy," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-25, September.
    6. Balcıõglu, Barış & Varol, Yãgız, 2022. "Fair and profitable: How pricing and lead-time quotation policies can help," European Journal of Operational Research, Elsevier, vol. 299(3), pages 977-986.
    7. Benioudakis, Myron & Burnetas, Apostolos & Ioannou, George, 2021. "Lead-time quotations in unobservable make-to-order systems with strategic customers: Risk aversion, load control and profit maximization," European Journal of Operational Research, Elsevier, vol. 289(1), pages 165-176.
    8. Ying Chen & John J. Hasenbein, 2020. "Knowledge, congestion, and economics: Parameter uncertainty in Naor’s model," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 83-99, October.
    9. Sabri Çelik & Costis Maglaras, 2008. "Dynamic Pricing and Lead-Time Quotation for a Multiclass Make-to-Order Queue," Management Science, INFORMS, vol. 54(6), pages 1132-1146, June.
    10. Mustafa Akan & Barı ş Ata & Tava Olsen, 2012. "Congestion-Based Lead-Time Quotation for Heterogenous Customers with Convex-Concave Delay Costs: Optimality of a Cost-Balancing Policy Based on Convex Hull Functions," Operations Research, INFORMS, vol. 60(6), pages 1505-1519, December.
    11. Shuo Wang & Xiuli Xu, 2021. "Equilibrium strategies of the fluid queue with working vacation," Operational Research, Springer, vol. 21(2), pages 1211-1228, June.
    12. Shiliang Cui & Senthil Veeraraghavan, 2016. "Blind Queues: The Impact of Consumer Beliefs on Revenues and Congestion," Management Science, INFORMS, vol. 62(12), pages 3656-3672, December.
    13. Liu, Jian & Chen, Jian & Bo, Rui & Meng, Fanlin & Xu, Yong & Li, Peng, 2023. "Increases or discounts: Price strategies based on customers’ patience times," European Journal of Operational Research, Elsevier, vol. 305(2), pages 722-737.
    14. Son, Jae-Dong, 2007. "Customer selection problem with profit from a sideline," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1084-1102, January.
    15. Pavlin, J. Michael, 2017. "Dual bounds of a service level assignment problem with applications to efficient pricing," European Journal of Operational Research, Elsevier, vol. 262(1), pages 239-250.
    16. Jiaqi Zhou & Ilya O. Ryzhov, 2021. "Equilibrium analysis of observable express service with customer choice," Queueing Systems: Theory and Applications, Springer, vol. 99(3), pages 243-281, December.
    17. Myron Benioudakis & Apostolos Burnetas & George Ioannou, 2022. "Single versus dynamic lead-time quotations in make-to-order systems with delay-averse customers," Annals of Operations Research, Springer, vol. 318(1), pages 33-65, November.
    18. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan & Tonghoon Suk, 2020. "Revenue maximization in two‐station tandem queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(2), pages 77-107, March.
    19. Philipp Afèche & Opher Baron & Yoav Kerner, 2013. "Pricing Time-Sensitive Services Based on Realized Performance," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 492-506, July.
    20. De Munck, Thomas & Chevalier, Philippe & Tancrez, Jean-Sébastien, 2023. "Managing priorities on on-demand service platforms with waiting time differentiation," International Journal of Production Economics, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:92:y:2019:i:3:d:10.1007_s11134-019-09618-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.