IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i6d10.1007_s11135-023-01678-9.html
   My bibliography  Save this article

Measuring human mobility in times of trouble: an investigation of the mobility of European populations during COVID-19 using big data

Author

Listed:
  • Barbara Guardabascio

    (University of Perugia)

  • Federico Brogi

    (Italian National Institute of Statistics (ISTAT))

  • Federico Benassi

    (University of Naples Federico II)

Abstract

Spatial mobility is a distinctive feature of human history and has important repercussions in many aspects of societies. Spatial mobility has always been a subject of interest in many disciplines, even if only mobility observable from traditional sources, namely migration (internal and international) and more recently commuting, is generally studied. However, it is the other forms of mobility, that is, the temporary forms of mobility, that most interest today’s societies and, thanks to new data sources, can now be observed and measured. This contribution provides an empirical and data-driven reflection on human mobility during the COVID pandemic crisis. The paper has two main aims: (a) to develop a new index for measuring the attrition in mobility due to the restrictions adopted by governments in order to contain the spread of COVID-19. The robustness of the proposed index is checked by comparing it with the Oxford Stringency Index. The second goal is (b) to test if and how digital footprints (Google data in our case) can be used to measure human mobility. The study considers Italy and all the other European countries. The results show, on the one hand, that the Mobility Restriction Index (MRI) works quite well and, on the other, the sensitivity, in the short term, of human mobility to exogenous shocks and intervention policies; however, the results also show an inner tendency, in the middle term, to return to previous behaviours.

Suggested Citation

  • Barbara Guardabascio & Federico Brogi & Federico Benassi, 2024. "Measuring human mobility in times of trouble: an investigation of the mobility of European populations during COVID-19 using big data," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5181-5199, December.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:6:d:10.1007_s11135-023-01678-9
    DOI: 10.1007/s11135-023-01678-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-023-01678-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-023-01678-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Wei Biao & Zaffaroni, Paolo, 2018. "Asymptotic Theory For Spectral Density Estimates Of General Multivariate Time Series," Econometric Theory, Cambridge University Press, vol. 34(1), pages 1-22, February.
    2. Cubadda, Gianluca & Guardabascio, Barbara, 2012. "A medium-N approach to macroeconomic forecasting," Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
    3. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    5. Alexander, Monica & Zagheni, Emilio & Polimis, Kivan, 2019. "The impact of Hurricane Maria on out-migration from Puerto Rico: Evidence from Facebook data," SocArXiv 39s6c, Center for Open Science.
    6. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    7. Yacine Aït-Sahalia & Dacheng Xiu, 2019. "Principal Component Analysis of High-Frequency Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 287-303, January.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Francesco C. Billari, 2022. "Demography: Fast and Slow," Population and Development Review, The Population Council, Inc., vol. 48(1), pages 9-30, March.
    10. Everett Lee, 1966. "A theory of migration," Demography, Springer;Population Association of America (PAA), vol. 3(1), pages 47-57, March.
    11. Monica Alexander & Kivan Polimis & Emilio Zagheni, 2022. "Combining Social Media and Survey Data to Nowcast Migrant Stocks in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(1), pages 1-28, February.
    12. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    2. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    3. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    4. Matteo Luciani & David Veredas, 2012. "A model for vast panels of volatilities," Working Papers 1230, Banco de España.
    5. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    6. Matteo Luciani & David Veredas, "undated". "A simple model for vast panels of volatilities," ULB Institutional Repository 2013/136239, ULB -- Universite Libre de Bruxelles.
    7. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    8. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models," LEM Papers Series 2007/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.
    10. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    11. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    12. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    13. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    14. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    15. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    16. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    17. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    18. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    19. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
    20. Choi, In, 2012. "Efficient Estimation Of Factor Models," Econometric Theory, Cambridge University Press, vol. 28(2), pages 274-308, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:6:d:10.1007_s11135-023-01678-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.